ورود

View Full Version : حذق نویز با موجک دو سطحی



nina222
سه شنبه 18 فروردین 1394, 09:37 صبح
سلام
از دوستانی که با این مبحث آشنا هستن می خوام که بنده رو راهنمایی بفرمایند.

حذف نویز از تصویر بوسیلۀ اعمال تجزیۀ ویولت دو سطحی، ویولت دوقطری و آستانه گیری 3.9 انجام می شودحذف نویز از تصویر بوسیلۀ اعمال تجزیۀ ویولت دو سطحی، ویولت دوقطری و آستانه گذاری 3.9 انجام می شود.
فرمول آستانه هم به این شکل هست. که برای آستانه نرم یه مقدار متفاوت هست.
http://barnamenevis.org/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnQAAABJCAIAAAA 7cCzCAAAgAElEQVR4nO2dZ1QbWbbv 7213rof7n1z352ZDjPTwT0dx93ubrdzNg7tHGm3c87ZOOJAtsE EkwwGk0xOJuecowQiZwESQgQhEMqxar8PkkASIpq2pZ7zWzar6 tSpXbuOqup/8nkPEAgEAoFAzCrvvWsHEAgEAoH4o4HEVa/AFf8RCAQCocsgcdUXcKWs4oDLN8SluXmN3Zx36RQCgUAgtIHEV V/AR/4AAIh7n1z8dfXem5U07rtzCYFAIBDaQeKqX2AAALJB8yMbfth1 h8pBVcQIBAKhiyBx1SfkWkoMuPPfHy4u7JGphP2bg2vuolRBIB DvFCSu gY2eHrxVyuOuyn39UpGtHfI0qtbQCAQiCmAxFXfYJF /vTDY09zFbv6IEzVxbEJVZQJIkgGWvwDs96ga5a4sTw3KTEhISE hIyc3LycjMSEhISExPaOAxhICgH4kEwKB AOBxFXfGKxcNOf94/Z579qPaZASYWOXVg0AKn2e1RBTy2/c8h6YqX1WU8bRHQefunt7e3sfXf7Np/O2e3h7e3u57duxySatWXldBAKBeHsgcdUXlPIwRFo058Njtrnv 0pdpkhnt6JRZB O3hYq6iMb3XzE1QnHJMHsqpVlpflhwVh1DvnN907KDlunybWJu 6OvqnhFz03ccgUAgZggSV31jiLR4zkfH7MaWXMcRDxxAOTBW27 ExXYEABwBMKlZ0l8KwCeNPicxoJ es2pFdiUQs38AwhTVRF/H fX9NcRUPRPnaWzn7VbT1TeSAsC8hNYcpBgCQ9ZYunTfXPlteBY 3XFiTX9fFGzkQgEIi3BhJXfUOLuOI4JqwuyHJ1cIwndAHAUGvx C88Y5TidqcuKIiazvTY5LtL35auM/MK0uCArK9eGfrFGnGmRGe0kL7kCiJsrimLCgl76RRcUFUX6uti 4v biIKNX3r8fqCmuACBiEbOirC3NLRxfljfStFuXSvgiodytjlSX b/kcCUjwnGxQKeFMeVU28gfUUgEG8PJK76hraSa3tpeg6hzuv uZOPkwEg2/nahqM2YoARTWGTCU/vaXBX/scpPF qYkrQ2xIeHjckkpS/MF71y81Wctnx7cczyXwAUIyynT6Z0Y5OWfUAQK3Kf51AkMgkVm d3/GYVWZ/pvf2Y6QAOOL3y3gP/wXENCCqLEh9bmFk88yis65rgQlFPj3yy6Ya8KhlJKQKBeIcgcd U3tIlrT0sHu7fxouH ICIDQGp7/tAd72LVCJhUxBnWBmuYwxcpCnoAAMDqprSRBwAgzOz8gQchALi AL4A306qMaEenrDoAoHQ0dQ1LAZg3DPc6JLUBJhWKpAAg7iLcu x gpeSqhqSpssjF v6F 05NDKG6S/JN/qNfFu29F/oGniIQCMTsoLPiql8Fjyl6O27d5DTuVi6uYzo09ZeHbNl9t1cG IGw tGlXSBVL1TYuk/C4HK4mHC6XwxOK8dGuRkpHcOatX/fax7dO3a8JyIh2cslUaXOl5Gz/5UBBj2QkRNxFvPdgTJurZnLh7TUlrtbGp64 qevlw9hEY9es HaeVVSz6vkIBEIPmfzd1f23W5fFVf1zr5KY025F1HISPivNcOo T/s4kpqqHUzI0WLn4sw Pj4xzVZL/3GjPdXcA4FZFrtl0spE/Yl5ZLXxXO05h TLF1TEccCalqaqZLqZmr12 o5QFIOlPyypgiQFwKYs1JMamfMMqZEQ7OmfVAUBbbRWZwa JeLJq70MpAKejOq 4FgMQ04jGE1ULi6qLU yePDa1dcurpY4Xabg84F/fry5U9BrGUSMrAqGHaHz2QX139Lut 2 3romr1pSdPcOje/hEyjtju NHmyzelLVgqHLxnA P2eZpXL09140ZOWtvbn5/asO wkGe/0yYg0O7n5mGVOnN9vh0 mVjaUZSXkVrRhABiDuGH T5ZhVeo T4nMGEeX7GYA9vXN6648iwh3fXT8uHVdQ2NKVEJdFxsAxNRK7d XCYk5tYbKDtbmpvUdJXed4l Yy6Q3VlfYn1//pP1ckVdbT oenedMIBEIXmFhZQf07qetdFXVNXEGeWLhMUF QdO/SeSOLF3VdTADg9Lb6ODw6f F6WFYlRzzVnjX8wa5wT3ufFKK6feWWlF WHGDuEsF8g19nmFrjZGsbV9k9WURpd0OJra11an2faiClKsvSx pXQzZ/CpXAAAFb1ks8/OmqTo34I4w/3V5TkFxPzjm9Yc9O3ZDS 2sYElpVtrvS2vOzc vYeJq0lJzOjsomiyCWKBuKe27gGp4hHT5kqWYqSK05trszOLab 2D3Y0VGZkFZDpChUU0SqMx1YLiwaifB2snLzLmyZJWyalMTMp1 uuFu4eXb3RCWi25R0ffNgQCMRGqFYo4tb21j8UHABFvqLYsK7t C0UrF7qM2d9BGWrB09mXXQXEFAAAc4zEq17z/3rennXkiKQDIxILAGzve 1//yurkyKbcaxUTMq5sn7/FJHzErrxxUcIf6GXxAcfS7c//Y8HpnglMTIaUSVrz5dx7kfUTxsIBcD616Me5X5qlqDVk9pcGfP L3hRGNk86WoBxY01/605y/nvMuUz3Gb0lbv/lgnQTE5PQD 41qmVL1s7Q fqr5vrGV8Frg0JoLyxpl6v5MhczoZ/Jq4fEQ0yq09BbGJCwWS1v0qVxaniXQ2fcOgUBMAFZdkJ5e3iyS YhguZbaX71/5zS4zxWdcKuaQcpMKa QDB3T3HddVcQUAjHZo/gfrzEZ0EbKeXvzgo/V1KguYjsxCoB0cwwG3vbxjt XrkSAAkPF6HO7deE3oxnEg Zt v bapBPvYZimno GSKn7Fq wSmhWOThaZMQw2Wgwn7x57VLrtDY1I9S85XPXRzdPZSoiHAD6i 30 /tPnwbVqqsOmEh49cUnPzXI2t04jUFXjzxpSTnlBIZU1k/rmtAhb27SaCVwSUcpv3PSZ8fSHCATij0RPTZq1YzhH0RkEAwC7 y9t3qmgBCPt8XN0ruvmoWnhGSKn7f/zreouokYDcZ5fe/2BdzTAAwGB7dVJSan5udmhoQg9PKhUwc ICfGJSkv0dztxyZAN0VRVGxyXm5qQe3bz4N5tYFbt4e57vvz75 6t6L HY6ixRsMW/lmVxCrum1C7ccI3gYSDl9KZEBAdGZMd5Wlx96CnBgkGvSooKdH J0TS9sAQMztLS7ILSrIe/nseWW3EHDa/uWrbr1MSA1xPnziZnpjv/wyzI665ITkhPh4b7 Qhj4 AAC3edOapU/T2gAAFzJzkuMSElNT/K2//nJtfCsfAAqD7K6YefMAtD0u8hDM/uiquTtM2WPK7jxmdxWpisoUqMefLXCQiQRi6eQRtVFVGBNHUsy apNUxyUDLK//0N5i4H4FA/GHgOhtdck9RLa5gNhe37TaPUI2U5W150SZaR3UVAHRbXLuOL/pozsrdD5UcNJj/lzlb69kAIHS4fPhRAAEA7E/9ZhJcLuH0mhxe8cXmy XFeUGRqcTcGFNLz36 VMann9n4wz7rGDXD9OJNS1cFERgYjpMCLb6YuzOrhdJRl7Ly24 UvcuniQcrVX36et/M sTQzOCqnODXEziOc1tNT8Mr4L//9fTaNR/R7bOycBABN2UmlHRzAuw8uXHTiSSSNTvW8abhkpzkfgNdeePnE 7TIKWyqVZnsbL950sY0DICJvXr30aXoHgDDQ0cI9qUoqlVFzPD 75bLlcXMsjXB86BCrm69MmQsQI6x8W7snu4MAkdZ46 8iNFVfdzXgiEIi3j7SvePdaw7R2kUqYFnHtL/bfsP5Um/AtezcNdFlcqQfmf7DiuhtdScj9I //bUPNMADgA710OoPV09V0a7fBCbsUAAh7fGzZBSf5qTYnD5oGkQ AAALe tGOv1WsAwJUNrlhf6ZZlq0IrBwGg4tWj71ZdGQQA4Nw2WHXHox wAPC8YbrrqBwAAsscnDt51iSVVVxMK0hxs7MpoXGq6x7xvllgH ZysqfCUdvy5cYRnXCgBt8fbLfz7JAMi0PrvO0EZR0BO2bP3pmz uvGwG6tqxZZpfXI vK3rbtZD0bAAAoOcu Wx/TolFsw8dopyTb22rvgWtF5KGROGNHgqp3Up8t0cKnMeRoQjv4J M2gSGURiH93BsuCF/y8m6DW5V LuPLJqRt 2JLRIQJdRYfFVUI98OP761XbXG0vvP hQQ0LAKC/qTw6Jp020Gt7fOdpuxQACDQ7svqyCwAA3nnkp8W2MS0AACCzPL dlj9VI3TIOALLe4s1LV4dWDAFAxatH360gcAwDQyWGXsRQAA1z N7N98IAAAAxtldW21TOlTcwgGgMMxp6bxvV/56t4UhAFnXvkUrzGIaAKA 2mblkrMsgOALmxdvfaj82Vknts0/ KIYgL5lzTKn4v6BfPf5Bsc7RQAAMnL6krnroptVWpKVV1FH/Prp1a3777QxtbR6vhVRmq0ipqYRzWFRs2AciTQCoa8wivxHEPc TJxFXSkbZy7IalZALqKboqr/OPYc3j B stIkdCs 0uf/C3Dc0SAH7jgYXrfYoHAcDhxI5TDhkAEGJxfM01NwAAnHVj/YJfTRVVwZZnNu2yVBfXnqJ1C5ZF1HIBgBRg9r3BNQYAwNCtDWs e FYCgPv5vdtuBQEAgNj26Lr5 yzl408GKc319c2t1A4 ADbccWHdQsOH8QCDB5eusoxrBoCmWLvVy84zAZqjzP7 3S8kea8jQfORbTsDSSwA6haD5c7FA LWqC /XJTYKgIAoGQu HptdCsPAKQiHpcvVPFUA1mS0/Uf154kMUb0dbYbVjX/zpLJ3ye2ylk4AKZSlMeUHfSRyiIQeoaoI3Xjkj05NHnFn IVtr28c7dlpGo0dk3EuuX7CEO6 47rqrjiUkZbzvz/fO/z3ywZbCEAiHkst7Pr3ntvTmxDn4zfdOCHL7decSypLLu9d9264 086 xmOFw0 3mI0yBMDQF2ax5IVW70SiqmUxovbF2644jIoVPmpeOQDaxeftg ql0Onxdhf Z87uZp5EKmgz/Odnx63ThXzOw22LvttpxRZIAKCvInr5t58YHLru7OLhHRw7yOW nvnJ/HlLIGGKleNm6xZDEnIYVf//snFshBli y VP/765elgIkgG7a6eM3WLb2zuKEl7Z yQIAbjdRd9/8en1YJIM5zqc37v 8IOyxtb6NI9v5yxwy2wBgHTH69tOPmZP9LQI7 1cuPKU64zniJgk2cftSDVjgyDic9i8iapucJmIw2JLZ1h 1d1XC4FAzARp/4NDJ/zzuwEUzVxCDuPSprmLzrtyBOKRF74 zuXX00 541p59 iauCqTDhM1lWU72du7eIQ1dbMAgMvojA3ydHBwSiysFQEMkMv9 fEPrqP197VVxcVnd/T0Zr30cvSLaGYrUpjWWBAeEF1fU1VcTalpoIkzt202pLggJSaY PDRGzohxdg9sH MLB9uDnLuEZRBaTHh/40t0nljYk7 cNQ50Vbg52/tE5TIEMABjttcnJmaTq6vrmTgDg0uteOrtGZ9VIQVqdFe3k6lf XLa/REFSX5mVl5xJq2uSTBva0EV 4ukbnVotwAJxbmPw6PDa1vrmxnFDZPcAGgE5SfnQaQTquYOAAQ El3/OC/volv5aqn1ywj4Q4zGP1s4Qy7BwPAiGsl0SHPFfM6aXdW0t/gZfGcPu1LKazJmGRnk3umFhYWFpYmD 7evnvfwsLcwtzk9sOnFfSpTM2BQCB0i9rUV489U5R1aNgQvTXC y/nl64yeQa7yIyIIsDXzy255dz5Ojq6J63gtcLMgIsqf6g1N/X5FJVxta7yJR/qKf/rkzxd8idqPzgb05gI3z6DEuLgXHt5l5MnWqhkXxe YF Jn60 YIJ6kt8b1jgNtpoXxqliPG/efExsbG5vKD3z9yeqjto2NjY11xVevnQ0g9c/QKAKBeIfIuNkJUUQyQ9tHEAdc1lWXHxqXN0ETmi6gc I6ZaadoL/PL/DWf9fh6iWff3TYOnv8GLj6xsQe4hpbOLfNaP/Z6NphAOgqCjh81oIuHufUycEBoCAswD6wYgJPJH11bsaO3Zriq jWyrJFIbKYMjQZIB16/ilJ4yK9dNneeTVKn/Eh engZTYf76SMQiPHBRYMVpQQGV0ummz/UXVpew5OBjg/k019x/XdF23quACBg95M7aSIAec6Ow HKpv3k4QBAy3wxf9lJsrySdrBqk8GmCPngp5k xyriCiDltTc1dA1yAUTUjg4mVwBTFVdxU3m282MLM6sX9SriKm VRiqqb5WOievK85n6zJle kh0maiKV9wl198VDIBCTgctkMo0QAFwqlans6i5IXPUNbeIqGu 7OSUu1Mb5tHUwAAEpewLlrTsMAIzk7CY/VUq8dcrfasgWFPrf/uvacYrJlbsuKlT/ej294E39HxVU8VJielJWV7PLgkaP368iXj3f/ZtwlAhion0hcZfy6wuRnFhaWTz1yCC0aQ3hVPU 0OfPVosvjr1uHQCD0gombBbWO79dFkLjqG9rEtTE7jdRCfnHr1 LXn QDw2vz0ruteqjrE6ahytdTOy9gS1cxhmvul/1p7li4/mdu8dNG8SyEkFUvTpiAswC6oAgA6y7IT8hoBwOvMzv0PogY6Sm 1tA4cwwBhaxBUHHMexZkK2rZXFk6cvC6o7VeuvccVyraoOic0O LV175xVomEEgEPqEmnDiyr4nY95kPRjRjsRV39Amrnw2X0Qj7N 96NJcmBuAYH9r3JGriVXrGpcD71l/WnlWWXFtXLP/pbqzc1Ayf44KwALtAIgBwhlhCMQ74wBXDvS7p7SMRxJrVwvLXS RpofXnZzgv5LQxVa pOqLxggqadc741Cx1ZHmBs9haBQPwB0Jv3GomrvjFOm2tzktPW Q ZcABgq37l V0qHEEDR7RgAFzK7cpO1U1DdgQE 0juZkuo8b8GRNnmbK7Ny3fJV/sQ3Wq6mICzQPnC0t7CQnLrN4FAZQwYgZrDYuJY2V7kjWGdjudd zZys719i8aq5M06zGG8aqDvv0m2UJLfLpWkZyu/rxEiIQiD8eSFz1jXHENc/1 u6bHgDQnuSycuu1HhmAYoJiHAB43U0hntp5nV2jXGIHBwDZUN2 JLQei6zkAQC98tdXwZqcAQMbOS0lt6mbPwN CsAD7YBKALNnLJaqovSrEdMGeOxgAozo3OqcKB5Bq6dA0Og6J1 lDm6WpnZmIbkVI2PNpvWbNgWv7i2ndLTg2BmpEZeItAIBCzAhJ XfWMccRX2EC0srTNy84y2rdh 5RUAqMjP9GSmpTz qZNvSmKik71jaiUFAIDTtOOHfx60TZyBXhWEBTgEVwGI3IxOXT DxSI4IsLK2jU1MjU/J6WNLYaLewqNX6yeT/F0crczswuLyWXyJ8pZwAOhqIMSEBx5YNu LeYZB0Un1FIbmyQgEAvHWQeKqb2gVVyEjLzOruYvR11tzfOs2l/SR9dgnlRhcqw7xmP2Uzs5 9sik2Birs8w3IU88Zh3ZSRlpc8VlkoG XoEMQMShUKgckcKWNnEdyROoeTdArQ1w9ymsoavG4Q72tbc2N7 a0dVDa2sidgxzB BNwIBAIxFsCiau MVS5 LMPjyvEVdGqyKqJXrD2txou1ES7nL7xfHBMC Ubg9NqSwuryNMRLYUuFoT6y8V1PCR9tW73HGc8QxMCgUDoIEhc 9Y0h0vxPPzxul68aJmLT42NjY6LCPF Gdw/LZWo2C2 YjNdYWzcsmla5VeFAbpC3tU/5BC5JeqsdjWy6kLgiEIg/EEhc9Q1p34EfP1933kclSC5aUg5nZFbrWR8ENgODipJrL7mppp UxQTxMwKwrr Zqr59GIBAIvQSJq/6R7Xz z5/9UjvadVdTlvBxwt YGcznjGvZnD37CAQCoZsgcdUjlNojol38ZeHy0/bs0TE0aiVLZU/a2dKqN7IztZORrCIQiD8USFz1Egmr8arh s2nHzcxBJPHRiAQCMTbBYmr3iJlxoVHkTqH37UfCAQCgdAEiav eg2pUEQgEQtdA4qq/jF0ZBoFAIBA6ARJXBAKBQCBmGSSuCAQCgUDMMkhcEQgEAoGYZZ C4IhAIBAIxyyBx/fcEdYNCIBCI3xH9EtdpzTqEq2/M nS70zCmNeI71bcpXZxNqyuubtW2xA4OAIJhemlhpUgZgisWelN a5nQVlVZwZAA4Kzk2h8aWTXBdSlluCbFN66FJ4TNplcTysrIyI qmmpaWxory0rKyMSKqmDXAH6S3FVe1Kj9HcxQiE7jOtD7VOv9E 6La58Jjnkpauju29sbGRoSs6g4kOuPUEZXY0JYT6 kVls6dhoo9tseqO3u3tyVfeMvcKl/MrMSEffRNZkvyyPSYnz9wyJL1WNKOYyUiN8PWNL1KTorYBzKe5 2z3IaJ5pGfwTpINnd3aumlz3GRUUAJhOVxoUGpVUpA1UiytiRf h6JVVQMB5B0PbzhWNErgfHvttzHyTsgf5yDEyIbtDl/9OQNUwcHh0fnDT/ 8Our5g4ODg7XT2z/1TJUJuXEBnpn1fSouo1AIHQYfGR4IZ3a3scSAmAtpclmd2/Z ibIs icfhq5q1/1lHfg5hTQXXHldxOvnb8SlEloammOf357/q7TDZxxMzUdxVFWntEdDUVPLFwbBgRMxpDmAFBMOsQclAFImKS 1X829FVozc89wacrTU/9YdLZnsohS0aDJ3qUbL3qoOSIZNt23av4xl5k7MFOkDNLBdZtf 5pCnEjfJx8EjvnaSWCK6o XT8nYeAKj Lk05IeaucYpF5CTdlsZuVf0TLYRHDHgREFY8Ba806a/J9w5MlU xXOpz66uFF Su8DtyHWKzAUDQVWZq6U4VjH9tBAKhc CNZTlppU0iiag O97R2tbswc2l33 x6bQjSwoS4TAhO6msUfEB1tmx/rorrtVhJt8sO8ZU7AlDPPxKyeNO9ed5 8B ywj5NinJ87Z7vOKAspRV6O/29Hk6AABGO7B0pWlM45v4VuH38Ps115mTRwSfm4a7bvpoBAYaH Vp75sWbOPCGTPowSvprja ZNXEnN1US9OyRV7paEMZ2unMvrlaZPBKalbF7Vb94AiMVAR6Bo TMQV6wsJ6WsTf5USCyPLl9xQ5HUjIb8jMp6AAAQ 1k8fJXZMn3jCATi3cBoynnqGMqSgmyoMy4hjQMAANya199 Ni 0eggAcB7dx82rrl8IADqbbdZBcVVUMPaRIj/5rz8dNnk1JAEAkLDZXJ4IAMTc7uz01KTE ODA8PouLgB0NpQc3bxgxQmTooo6ejf5/OZ53 27U1rZwFXUDwN/oOHIT9 uO2hRWteOi7qOrlpz0yspM8L9zKVHhR0sAKyntSIgKLq0JNvku lFCNQOkgqqirABvd8/Q1CERDoD3tlfll5SmRwQExeQDQOUr0x/WXCgiFVgYXbf0SRbKi04SVnF2RnJyfFhQcHEdXX5pTyPD3UpxH eggxcclZOXnGO02WHfJFwDyAx0eukRrLBMuYvdmRAW/DE5iinAAIKbGZVd2qSTOVBJQsdHXSEqMS8zKSH3h9aq8c6gqw /EkZOJpH4AfojjnQNH7meWEPMz4l3t3XJq1MrhTdl p02CRtZGx8UcQl5qUEBAchGxqiTXx/1FKqFDfohVn3rygvMgNnppEa3o NUn7ULlyRKa5X23qj4JAGBiLjEnJdg/MCOfUFGW7e3mkV7RBQAVgR4BYaVTuDXNG SyhxSJL2jZ/eVc02B5HTWIeRyeQNGKUBXndNkxUkffPwQCoYnA4 4118RGAJAIeXy sl8Hu2bLui3hVSz5XvpLq2vPEt Vi1NB18RV9Rsoy3ll9uWf/s/XC7cEpVXLgzA2xfT6zbCSToFAUB3nvMrgYAmVL5WIzM9s3mUaK hJLZDLJk3ObN9x9JRJLcFy5BBvGNd269tiDKJFECjLa4SWLjpg FdnS0uF7du9zwMR9kdTF2H77/nWN0ZqiPd0YJMcjTJa2ynUapPzz/iy23gqUC6sPzRtVswBiNsbHpMoDqQJMv5u5Ka2ipLY1Y8u0Sv6 I AK7bo3vPoiuEAkEXIXrj6m1hlT0A4HVjz65bfgDAas29Z2bfzO AJBYybO5euuOgLANkeFrdtg0Wq9y9hZyckVREz9248lE3FAHrP bNxgl6JSkYtzY/xdzdUwU/x55t3Bko4mI6/t9r0npAEAgLggd988iljIvLBj88MgEgDO7cpfUXl93SBUJBrtf D9SesVZfXSXthbOyVqtjBBEVpMVl1NHZX3jaDX8IKGl2uHrjio iytMmpuH7pZMzgixNCV63PO Bl/ZF/S/djYvapfCri4ODkqr57O6cjZ9eP60PJ6h7P7r7vkAEBloEdAaMl Mnhcl7NrIj79aFNPIG3uopyzm0DkXtL4BAqEXyAbK9hr8mtqqu d4XrTjk9GX7kSqw3ny/DRvPt4s0T9cddE1cNRloLr6zb9V/vPf/Tj2JlAC0xtvOW3FO2Rlp6PzSeYcskwDA5sK2vVZR8lC7i9s3Pw xWNyO03LX lFkiAICUcmDxskdRDQDQkfxs2U9HuwCAkrHw6/UpVBkAMEvDdm4/k15KrKgkhjpbmnnGiYWMm9tXbTpl3cJUFDIJvgW3llEABg MbqFSbBDaKOpPk/7SwaUFzP4bDBykOOAOBzc8 eW/4A4H//9CXnNPnRV0YHDTSrhRX5AJlwqKmqoyHDa eB wwMxNTcLb8cKesfkUwcB1k/nUrWCoUmkKrkTkR9xqd 3X7sqqNPOKmpk8UWA0itLp0yDyUBAIiaj6xY753fBwBtyY7zdp zvVelhFfHAyCFQWZQUsqoqKvkAgobYjQZH6rgYh9nP5iurBUTk eyePZnSMvgk1IY43jf1G/ZB0Wxm7VTEwkHEqi6pFANzqmLXrjjZxMQ6zb1iIAQAx8Exo6bo AAAl SURBVIV/mFxc5d0ZcEwqGh7UwtAwR6atEFr28va/Fh7s1Fb3zGvMOnHYvEui5RACgdA1hgjBC3/eS2Ap9 VlJDEzwM09p1ne2IQDAJ csuHHbZmUidqb3i06KK44AA4yIYPFGlkLPN7 zP9 72 vawaJPjc/ O7ESE9f1yMGW86/BICnF7futYyUR7a7sP2XB0FKW/IvscBy57pTpgpxPbhk5aPIOgBojrdbsfgEFQBvSfj5X5tSKCIA aIh1WG5orJFr4tMrLm1bOuerVS8SawCgwtfk 7VXGQAA/dfWrLYKbxko9Xz/7 tLlV3Yks2PLd5wCwfwu2W4504QAHZj92ojP4VceV/9zeCsai8nzVEinrdPX3POAYCGaNtffjPnqMWcRkIKeuqe3Di2e s2Kn5fvT60bApBYnDtpGVoNAMBvOLJyR0gpAwBaEhx 2n25Dwflgwyh9248CyrXsFfsa7b9rIPmsyzuuHvycCp5tKRaFe hkZOw/GkFKszJ2q obPa/Q22TXaSdVO8RAj0D1Dk3cTpLdPVXuyv89cvLr0bKCLf7s7Nal 520jRoCXnP2iUMmFB3O4SIQiBEYBX4//LCHwFYJwoQVmSmFFZ3KfRwA B3pG/ 1PqmJP8aArqBr4qoUD4wT sKrtF0pK8zCH/7jf2wy6cPVId 8vyChTf595T7cu800sBIAbC/t PVJtDzu4zObNj4KUzcnMN206pR5KgAA3n1g2SrTqAYAaE14tmr xqW4AaEtZ N2WdJoEAFik8K8/nhdaI884SRora7q6Ke0MPoAs18v4q6 2VrGhKdT8BwN5hybmdYM1VmHNGJOw/KOvHdMp8uv5XDt0yjQaAPxuGhreDQIA88PL113zkx/1vbpvzVlPAMBkEol0ZACoUmIx qWd273LBgAg4MHRQxaRaimEccM97e9p5Ylb29BotbC0vzEyI0e m Jw58L9IACwuXzmyes6AABxy/FVO0PLWQDQnuI03/DaoMpFkhyNHvooK34lvA4yRYSJbU7sue5eBACN5aWNFOWzP1R/7/AVYp905Nz2VPez9xyFI8kvb3NlSEHC6yBTxZj4ybGdVz0KAaCR WFTbwweAikDP6VQLY2NC o u v5KIEFr7P7KxMMnnjFxmF7WBIFAvAsEbSnrF /OpY5gPkptauIfk2j80SSTAAYNdGGSw1LGPq7kutq IKkGB5cctvd4gtlM6Ozlj3R7uOm1E5AMDzND5/7qFfV3d3a1mC1eOXdB4mFgxe3vLdgnMuXJEEAMIeHfl w8XShlYmZ6R0JPO9vHv57nvEpi52H2ndnC/OPC/AACt5afT5P7bU8wTD5f4f/d 5r8p7MQCQDj87s/HjeWutnDwDvF6mENq5vVXmFh7k/kE rez HfM2vizf6fyf/2nYLpRKhWTDf845a58lA0h0fbD/rE1zdzetqeipmUN1r0Aq4lkdXLr0iB1fLOvM9l3y01q3hGJ6P/XRvtU/7zUblkoTba8dvOUuUr9xgEGbq8efJdf2dRRvm7/SObVTI4nEIqFAK0KRTGWwEs4g7Nt3ILyU3Nvbl/86wP91OWew5/RmgxNPk3lCEZOcturTeU8iajgcdrbb1b8u2F7RM4gp3SAluJx5 quh9zaqOWrJ6R2JR4bX9u4398yntNRGxGQw Jr8MrzX37AmbHpWxxdzWtCNG1nQZjIqrsXsDG7i1UWuX70ksLL l YLt5SAGttToqJp0pxACgIsAjYNq9hXEAXCbm9XZRqlOef/LeXyzDyul9TOmYd60 zf20VZDWQi0CgdA5JPTb 48GFvYAAGCinDD7XYaHTC0tzcxMbxvdcgsvEkkBAFoS3PaeeKL LfSl0TVxHYbbXpiTExsfFRUW jk7OHxptMxPXFGWnpKXnFVfIxxSze5t87M2fvIikMjkAIGa0BX l6ZpE6pCqtc/ze pde3kVN9OHuekerxwHxRCkuqUgOtrB0re7qbyOkmj60TChoEMv PwIYTA5yMzZ7lVJJlACAZzE2Iz8gvqSAQuwYFAMKCWD8TK48WB lfAaHa3sPCOKeRjAACtpOKUtNScvNI rhQABEPUcHdbO6/XdLYQAKg1BT6ePpklFcTSgkJCowTH6/PiAxJKVL77ilpZVmd1fHxiaqDVjz/vLh YoS7gfEZpfkZWbkF2RlpGUZUEgFyVbWdl sQ9ksYYrMiOMH9k4hGSSm5vifZ1fmRiGZ1bNZIZ4ZILrlyypks BAGSc3ozE6NT8chqtPSs1ISWnqJczmqmsjXe/Zh pNv2SmP7o4t2cDmV1jYRmZexeM4DJ L0ZCbFpuYRuSltuSnxadnEfX2Fn2uKKKyr8RcPdeUnR7o5PHzw wcfUJyiwg8TSLtXiU7SPnKOJ0Ug6BQLxLKuI9rbzSAACkQ2Evr G/cunXzppHRTaPrt8yK2uRVbOIQe1OPlDcaUfl7o4PiOuvF/Hc1yBgfd2fCmPGut49bRgJAqsPds bhUm1xJr/0G94yzvGxMQ0vo08Wj/PSwiyxoldxUSX5IU5PAwsUOxKapbE7qW iDkUzKrlOCWyo2ezu0xoG6s6EQOgPUlZqdCSJwhrvOL2p6FVkh paxAbqEDoqrKnKRGO3vg6vuKLZxzVOUR3CV6LjGSQDyYiKu0hS nHmckRPWaGttjQzS7Jo0EjgnFVbdVZr7F4vwcHnrEFKdEmjxwJ SvmctQ8fTJwjW31GxnrpMaJOAAMt5bZuQT28KXKe8BVY8g3mwt iXYJSJWMsYBzqC0c3ApUNACDpMrnlVNk7Rt5UDBF8n/sGFk7vFjV/UEUiq doRNkRL0NS32A2LgQC8S6Q8fpLi8sZPC3ZYsFQd0kJia04MsHX 7B2j4 I6A95aQqtK7KxeXcJtqSXkFxNZo8/Vm5udySPYTsjIKG8eb J IYuWGp3Sy9M I/8wpTIuo4gjA8D6fVzDmgelWqPJaUiKiFfMUTwrKK7CpNbEJJcK 1PNnCARCP8Bkyv6eakglYr14mf944oqYTWTSsTlHZblfJsFGQ7 Q87SMR8NH6AS0x5eGzWnePy68plSr7WeGAVsVBIBBvEySuCO1M WYhUq8QnNTP1puc3Z7TeGFfbRSAQiN8dJK4IrSjWZ51MDMdp7F QcBQAMRkqtauFquwrxmzX5G9sci0AgEG8VJK6I8dHUxYniTe3Q mC5Hk5z JmhtFEcgEIi3ARJXBAKBQCBmGSSuCAQCgUDMMkhcEQgEAoGYZf 4/aps6OCcdjAcAAAAASUVORK5CYII=

nina222
سه شنبه 18 فروردین 1394, 09:44 صبح
سلام
از دوستانی که با این مبحث آشنا هستن می خوام که بنده رو راهنمایی بفرمایند.

حذف نویز از تصویر بوسیلۀ اعمال تجزیۀ ویولت دو سطحی، ویولت دوقطری و آستانه گیری 3.9 انجام می شودحذف نویز از تصویر بوسیلۀ اعمال تجزیۀ ویولت دو سطحی، ویولت دوقطری و آستانه گذاری 3.9 انجام می شود.
فرمول آستانه هم به این شکل هست. که برای آستانه نرم یه مقدار متفاوت هست.