
c© The CodeBreakers-Journal, Vol. 1, No. 1 (2004)
http://www.CodeBreakers-Journal.com

CRC and how to Reverse it

Anarchriz

Abstract

This essay consists of a CRC tutorial and a way of how to reverse it. Many Coders/Reversers don’t know exactly how CRC
works and almost no one knows how to reverse it, while this knowledge could be very usefull. First the tutorial will learn you
how to calculate CRC in general, you can use it as data/code protection. Second, the reverse part will learn you (mainly) how
to reverse CRC-32, you can use this to break certain CRC protections in programs or over programs (like anti-virus). There
seem to be utilities who can ’correct’ CRCs for you, but I doubt they also explain what they’re doing.

I’d like to warn you, since there is quite some math used in this essay. This wont harm anyone, and will be well understood
by the avarage Reverser or Coder. Why? Well. If you dont know why math is used in CRC, I suggest that you click that button
with a X at the top-right of this screen. So I assume the reader has knowledge of binair arithmetic.

Keywords: Reverse Code Engineering; CRC;



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

I. Introduction

Target: CRC algorithm
Essay Level: Intermediate
Tools used: QEdit 2.1 (the best!)
Wordpad
some CRC progs
IDA PRO 3.6

II. What is CRC?

Cyclic Redundancy Code or CRC

We all know CRC. Even if you don’t recall, you will when you think of those annoying messages RAR, ZIP and other
compressors give you when the file is corrupted due to bad connections or those!@#$% floppies. The CRC is a value
computed over a piece of data, for example for each file at the time of compression. When the archiver is unpacking that
file, it will read the CRC and check it with the newly computed CRC of the uncompressed file. When they match, there is a
good chance that the files are identical. With CRC-32, there is a chance of1

232 of the check failing to recognize a change in data.

A lot of people think CRC is short for Cyclic Redundancy Check. If indeed CRC is short for Cyclic Redundancy Check
then a lot of people use the term incorrect. If it was you could not say ’the CRC of the program is 12345678’. People are
also always saying a certain program has a CRC check, not a Cyclic Redundancy Check check. Conclusion: CRC stands for
Cyclic Redundancy Code and NOT for Cyclic Redundancy Check.

How is the calculation done? Well, the main idea is to see the file as one large string of bits divided by some number,
which will leave you with a remainder, the CRC! You always have a remainder (can also be zero) which is at most one bit
less then the divisor (else it still has a divisor in it). (9/3=3 remainder=0 ; (9+2)/3=3 remainder=2)

Only here dividing with bits is done a little different. Dividing is repeatedly substracting (x times) a number (divisor) from a
number you want to divide, which will leave you with the remainder. If you want the original number back you multiply with
the divisor or (idem) add x times the divisor with itself and afterwards adding the remainder. CRC computation uses a special
way of substracting and adding, i.e. a new ’arithmetic’. While computing the carry for each bit calculation is ’forgotten’. Let’s
look at 2 examples, number 1 is a normal substraction, 2&3 are special.

-+
(1) 1101 (2) 1010 1010 (3) 0+0=0 0-0=0

1010- 1111+ 1111- 0+1=1 *0-1=1
---- ---- ---- 1+0=1 1-0=1
0011 0101 0101 *1+1=0 1-1=0

In (1), the second column from the right would evaluate to 0-1=-1, therefore a bit is ’borrowed’ from the bit next to it, which
will give you this substraction (10+0)-1=1. (this is like normal ’by-paper’ decimal substraction) The special case (2&3) 1+1
would normally have as answer 10, where the ’1’ is the carry which ’transports’ the value to the next bit computation. This
value is forgotten. The special case 0-1 would normally have as answer ’-1’, which would have impact on the bit next to it
(see example 1). This value is also forgotten. If you know something about programming this looks like, or better, it IS the
XOR operation.

Now look at an example of a divide:

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

2



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

In normal arithmetic:

1001/1111000\1101 13 9/120\13
1001 - 09 -|
---- -- |
1100 30 |
1001 - 27 -
---- --
0110 3 -> the remainder
0000 -
----
1100
1001 -
----
011 -> 3, the remainder

In CRC arithmetic:

1001/1111000\1110 9/120\14 remainder 6
1001 -
----
1100
1001 -
----
1010
1001 -
----
0110
0000 -
----
110 -> the remainder

(example 3)

The quotient of a division is not important, and not efficient to remember, because that would be only a couple of bits less
than the bitstring where you wanted to calculate the CRC from. What IS important is the remainder! That’s the thing that says
something important over about the original file. That’s basicly the CRC!

Going over to the real CRC computation

To perform a CRC calculation we need to choose a divisor, we call it the ’poly’ from now on. The width W of a poly
is the position of the highest bit, so the width of poly 1001 is 3, and not 4. Note that the highest bit is always one, when you
have chosen the width of the poly you only have to choose a value for the lower W bits.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

3



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

If we want to calculate the CRC over a bitstring, we want to make sure all the bits are processed. Therefore we need to add
W zero bits to the end of the bitstring. In the case of example 3, we could say the bitstring was 1111. Look at a little bigger
example:

Poly = 10011, width W=4
Bitstring + W zeros = 110101101 + 0000

10011/1101011010000\110000101 (we don’t care about the quotient)
10011|||||||| -
-----||||||||
10011|||||||
10011||||||| -
-----|||||||
00001||||||
00000|||||| -
-----||||||
00010|||||
00000||||| -
-----|||||
00101||||
00000|||| -
-----||||
01010|||
00000||| -
-----|||
10100||
10011|| -
-----||
01110|
00000| -
-----|
11100
10011 -
-----
1111 -> the remainder -> the CRC!

(example 4)

There are 2 important things to state here:
1.Only when the highest bit is one in the bitstring we XOR it with the poly, otherwise we only ’shift’ the bitstring one bit to
the left.
2.The effect of XORring is, that it’s XORed with the lower W bits, because the highest bit always gives zero.

Going over to a Table-Driven Algorithm

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

4



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

You all should understand that an algorithm based on bitwise calculation will be very slow and inefficient. It would be far
more efficient if you could calculate it on a per-byte basis. But then we can only accept poly’s with a width of a multiple of
8 bits (that’s a byte ;). Lets visualize it in a example poly with a width of 32 (W=32):

3 2 1 0 byte
+---+---+---+---+

Pop! <--| | | | |<-- bitstring with W zero bits added, in this case 32
+---+---+---+---+ 1<--- 32 bits ---> this is the poly, 4*8 bits

(figure 1)

This is a register you use to store the temporary result of the CRC, I call it the CRC register or just register from now on.
You are shifting bits from the bitstring in at the right side, and bits out at the left side. When the bit just shifted out at the
left side is one, the whole register is XORred by the lower W bits of the poly (in this case 32). In fact, we are doing exactly
the same thing as the divisions above. What if (as I said) we would shift in & out a whole group of bits at once.

Look at an example of 8 bit CRC with 4 bits at once shifted in & out:

The register just before the shift : 10110100
Then 4 bits (at the top) are shifted out at the left side while shifting 4 new bits in at the right side. In this example 1011 is
shifted out and 1101 (new) is shifted in.

Then the situation is this:

8 bits currently CRC/Register : 01001101
4 top bits just shifted out : 1011
We use this poly : 101011100, width W=8

Now we calculate just as usual the new value of the register.

Top Register
---- --------
1011 01001101 the topbits and the register
1010 11100 + (*1) Poly is XORred on position 3
------------- of top bits (coz there is a one)
0001 10101101 result of XORring

Now we still have a one on bit position 0 of topbits:

0001 10101101 previous result
1 01011100+ (*2) Poly is XORred on position 0

------------- of top bits (coz there is a one)
0000 11110001 result of second XORring
ˆˆˆˆ

Now there are all zero’s in the topbits, so we dont have to XOR with the poly anymore for this sequence of topbits.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

5



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The same value in the register you get if you first XOR (*1) with (*2) and the result with the register. This is because of the
standard XOR property:

(a XOR b) XOR c = a XOR (b XOR c)

1010 11100 poly on position 3 of top bits
1 01011100+ poly XORred on position 0 of top bits

-------------
1011 10111100 (*3) result of XORring
The result (*3) is XORred with the register

1011 10111100
1011 01001101+ the top bits and the register
-------------
0000 11110001

You see? The same result! Now (*3) is important, because with the top bits 1010 is always the value (*3)=10111100 (only
the lower W=8 bits) bound (under the stated conditions, of course) This means you can precompute the XOR values for each
combination of top bits. Note that top bits always become zero after one iteration, this must be because the combination of
XORring leads to it.

Now we come back to figure 1. For each value of the top byte (8 bits) just shifted out, we can precompute a value. In
this case it would be a table consisting of 256 (28) entries of double words (32bit). (the CRC-32 table is in the appendix)

In pseudo-language our algoritm now is this:

While (byte string is not exhausted)
Begin
Top = top_byte of register ;
Register = Register shifted 8 bits left ORred with a new byte from string ;
Register = Register XORred by value from precomputedTable at position Top ;
End

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

6



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

III. The direct Table Algorithm

The algorithm proposed above can be optimized. The bytes from the byte string don’t need to travel through the whole register
before they are used. With this new algorithm we can directly XOR a byte from a byte string with the byte shifted out of the
register. The result points to a value in the precomputed table which will be XORred with the register.

I don’t know exactly why this gives the same result (it has to do with a XOR property), but it has the Big advantage
you don’t have to append zero bytes/bits to your byte string. (if you know why, pleaz tell me :)

Lets visualize this algorithm:

+----< byte string (or file)
|
v 3 2 1 0 byte
| +---+---+---+---+

XOR---<| | | | | Register
| +---+---+---+---+
| |
| XOR
| ˆ
v +---+---|---+---+
| | | | | | Precomputed table
| +---+---+---+---+
+--->-: : : : :

+---+---+---+---+
| | | | |
+---+---+---+---+

(figure 2)

IV. The ’reflected’ direct Table Algorithm

To make things more complicated there is a ’reflected’ version of this algorithm. A Reflected value/register is that it’s bits are
swapped around it’s centre. For example 0111011001 is the reflection of 1001101110.

They came up with this because of the UART (chip that performs serial IO), which sends each byte with the least significant
bit (bit 0) first and the most significant bit (bit 7) last, this is the reverse of the normal situation. Instead then of reflecting
each byte before processing, every else is reflected. An advantage is that it gives more compact code in the implementation.
So, in calculating the table, bits are shifted to the right and the poly is reflected. In calculating the CRC the register is shifted
to the right and (of course) the reflected table is used.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

7



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

byte string (or file) -->---+
| 1. In the table each entry is reflected

byte 3 2 1 0 V 2. The initial register is reflected
+---+---+---+---+ | 3. The bytes from the byte string aren’t
| | | | |>---XOR reflected, because all the rest is.
+---+---+---+---+ |

| |
XOR V
ˆ |

+---+---|---+---+ |
| | | | | | Precomputed table
+---+---+---+---+ |
: : : : : <---+
+---+---+---+---+
| | | | |
+---+---+---+---+

(figure 3)

Our algorithm is now:

1) Shift the register right by one byte
2) XOR the top byte just shifted out with a new byte from the byte string to yield an index into the table ([0,255])
3) XOR the table value into the register
4) Goto 1 if there are more bytes to process

V. Some implementations in Assembly

To get everything settled here’s the complete CRC-32 standard:

Name : "CRC-32"
Width : 32
Poly : 04C11DB7
Initial value : FFFFFFFF
Reflected : True
XOR out with : FFFFFFFF

As a bonus for you curious people, here’s the CRC-16 standard: :)

Name : "CRC-16"
Width : 16
Poly : 8005
Initial value : 0000
Reflected : True
XOR out with : 0000

’XOR out with’ is the value that is XORred with the final value of the register before getting (as answer) the final CRC. There
are also ’reversed’ CRC poly’s but they are not relevant for this tutorial. Look at my references if you want to know more
about that.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

8



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

For the assembly implementation I use 32 bit code in 16 bit mode of DOS... so you will see some mixing of 32 bit and
16 bit code... it is easy to convert it to complete 32 bit code. Note that the assembly part is fully tested to be working correctly,
the Java or C code is derived from that. Ok. Here is the assembly implementation for computing the CRC-32 table:

xor ebx, ebx ;ebx=0, because it will be used whole as pointer
InitTableLoop:

xor eax, eax ;eax=0 for new entry
mov al, bl ;lowest 8 bits of ebx are copied

;into lowest 8 bits of eax

;generate entry
xor cx, cx

entryLoop:
test eax, 1
jz no_topbit
shr eax, 1
xor eax, poly
jmp entrygoon

no_topbit:
shr eax, 1

entrygoon:
inc cx
test cx, 8
jz entryLoop

mov dword ptr[ebx*4 + crctable], eax
inc bx
test bx, 256
jz InitTableLoop

Notes: - crctable is an array of 256 dwords
- eax is shifted to the right because the CRC-32
uses reflected Algorithm

- also therefore the lowest 8 bits are processed...

In Java or C (int is 32 bit):

for (int bx=0; bx<256; bx++){
int eax=0;
eax=eax&0xFFFFFF00+bx&0xFF; // the ’mov al,bl’ instruction
for (int cx=0; cx<8; cx++){

if (eax&&0x1) {
eax>>=1;
eaxˆ=poly;

}
else eax>>=1;

}
crctable[bx]=eax;

}

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

9



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The implementation for computing CRC-32 using the table:

computeLoop:
xor ebx, ebx
xor al, [si]
mov bl, al
shr eax, 8
xor eax, dword ptr[4*ebx+crctable]
inc si
loop computeLoop

xor eax, 0FFFFFFFFh

Notes: - ds:si points to the buffer where the bytes to process are
- cx contains the number of bytes to process
- eax contains current CRC
- crctable is the table computed with the code above
- the initial value of the CRC is in the case of CRC-32: FFFFFFFF
- after complete calculation the CRC is XORred with: FFFFFFFF

which is the same as NOTting.

In Java or C it is like this:

for (int cx=0; cx
int ebx=0;
eaxˆ=bytesOfFile[cx]; // only the lowest byte should be XORred
ebx=eax&0xFF;
eax>>=8;
eaxˆ=crcTable[ebx];

}
eaxˆ=0xFFFFFFFF;

So now we landed at the end of the first part: The CRC tutorial. If you want to make a little deeper dive in CRC I suggest
reading the document I did, you will find the URL at the end of this document. Ok. On to the most interesting part of this
document: Reversing CRC!

VI. Reversing CRC

When I was thinking of a way to reverse it... I got stuck several times. I tried to ’deactivate’ the CRC by thinking of such
an sequence of bytes that it then shouldn’t matter anymore what bytes you would place behind it. I couldn’t do it... Then I
realized it could NEVER work that way, because CRC algorithm is build in such a way it wouldn’t matter which_bit_ you
would change, the completeCRC _always_ (well always... almost) changes drasticly. Try that yourself (with some simple
CRC programs)... :)

I realized I only could ’correct’ the CRC_after_ the bytes I wanted to change. So I could make such a sequence of
bytes, that would ’transform’ the CRC into whatever I wanted! Let’s visualize the idea:

Bunch of bytes: 01234567890123456789012345678901234567890123456789012
You want to change from ˆ this byte to ˆ this one.

Thats position 9 to 26.
We also need 4 extra bytes (until position 30) for the sequence of bytes which will change the CRC back to its original value
after the patched bytes.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

10



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

When you are calculating the CRC-32 it goes fine until the byte on position 9, in the patched bunch of bytes the CRC
radically changes from that point on. Even when pass position 26, from where the bytes are not changed, you never get the
original CRC back. NOT! When you read the rest of this essay you know how. In short you have do this when patching a
certain bunch of bytes while maintainting the CRC:

1) Calculate the CRC until position 9, and save this value.
2) Continue calculating until position 27 and 4 extra bytes, save the resulting value.
3) Use the value of 1 for calculating the CRC of the ’new’ bytes and the extra 4 bytes (this should be 27-9+4=22 bytes)

and save the resulting value.
4) Now we have the ’new’ CRC value, but we want the CRC to be the ’old’ CRC value. We use the reverse algorithm to

compute the 4 extra bytes.

We can to point 1 to 3, below you learn to do point 4.

A. Reversing CRC-16

I thought, to make it more easy for you, first to calculate the reverse of CRC-16. Ok. We are on a certain point after the
patched code where you want to change the CRC back to its original. We know the original CRC (calculated before patching
the data) and the current CRC register. We want to calculate the 2-bytestring which changes the current CRC register to the
original CRC. First we calculate ’normally’ the CRC with the unknown 2 bytes naming them X and Y, for the register I take
a1 a0 , the only non-variable is zero (00). :) Look again at our latest CRC algorithm, figure 3, to understand better what i’m
doing. Ok, here we go:

Take a 2-bytestring ’X Y’. Bytes are processed from the left side.
Take for register a1 a0.
For a XOR operation I write ’+’ (as in the CRC tutorial)

Processing first byte, X:

a0+X this is the calculated topbyte (1)
b1 b0 sequence in table where the topbyte points at
00 a1 to right shifted register
00+b1 a1+b0 previous 2 lines XORred with eachother
Now the new register is: (b1) (a1+b0)

Processing second byte, Y:

(a1+b0)+Y this is the calculated topbyte (2)
c1 c0 sequence in table where the topbyte points at
00 b1 to right shifted register
00+c1 b1+c0 previous 2 lines XORred with eachother
Now the final register is: (c1) (b1+c0)

I’ll show it a little different way:

a0 + X =(1) points to b1 b0 in table
a1 + b0 + Y =(2) points to c1 c0 in table

b1 + c0=d0 new low byte of register
c1=d1 new high byte of register

(1) (2)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

11



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Wow! Let this info work out on you for a while... :)
Don’t be afraid, a real value example is coming soon.

What if you wanted the register to be some d1 d0 (the original CRC) and you know the value of the register before the
transformation (so a1 a0)... what 2 bytes or what X and Y would you have to fed through the CRC calculation? Ok. We will
begin working from the back to the front. d0 must be b1+c0 and d1 must be c1... But how-the-hell, I hear you say, can you
know the value of byte b1 and c0??? ShallI remember you about the Table? You can just lookup the value of the word C0
C1 in the Table because you know C1. Therefore you need to make a ’lookup’ routine. If you found the value, be sure to
remember the index to the value because that’s the way to find the unknown topbytes e.g. (1)&(2)!

So now you found c1 c0, how to get b1 b0? If b1+c0=d0 then b1=d0+c0! Now you use the lookup routine to lookup
the b1 b0 value too. Now we know everything to calculateX & Y ! Cool huh?

a1+b0+Y=(2) so Y=a1+b0+(2)
a0+X=(1) so X=a0+(1)

Non-variable example for CRC-16

Lets look at an example with real values:

-register before: (a1=)DE (a0=)AD
-wanted register: (d1=)12 (d0=)34

Look up the entry beginning with 12 in the CRC-16 table in the appendix. -This is entry 38h with value 12C0. Try to find
another entry beginning with 12.
You can’t find another because we calculated each entry for each possible value of the topbyte and that’s 256 values, remember!
Now we know (2)= 38, c1= 12 and c0= C0, so b1= C0+34=F4, now look up the entry of B1 beginning with F4.
-This is entry 4Fh with value F441.
Now we know (1)= 4F, b1= F4 and b0= 41. Now all needed values are known, to compute X and Y we do:

Y=a1+b0+(2)=DE+41+38=A7
X=a0+(1) =AD+4F =E2

Conclusion: to change the CRC-16 register from DEAD to 1234 we need the bytes E2 A7 (in that order).

You see, to reverse CRC you have to ’calculate’ your way back, and remember the values along the way. When you are
programming the lookup table in assembly, remember that intel saves values backwards in Little-Endian format. Now you
probably understand how to reverse CRC-16.... now CRC-32

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

12



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

B. Reversing CRC-32

Now we had CRC-16, CRC-32 is just as easy (or as difficult). You now work with 4 bytes instead of 2. Keep looking and
comparing this with the 16bit version from above.

Take a 4-bytestringX Y Z W , bytes are taken from the LEFT sideTake for register a3 a2 a1 a0

Note that a3 is the most significant byte and a0 the least.

Processing first byte, X:

a0+X this is the calculated topbyte (1)
b3 b2 b1 b0 sequence in table where the topbyte points at
00 a3 a2 a1 to right shifted register
00+b3 a3+b2 a2+b1 a1+b0 previous 2 lines XORred with eachother
Now the new register is: (b3) (a3+b2) (a2+b1) (a1+b0)

Processing second byte, Y:

(a1+b0)+Y this is the calculated topbyte (2)
c3 c2 c1 c0 sequence in table where the topbyte points at
00 b3 a3+b2 a2+b1 to right shifted register
00+c3 b3+c2 a3+b2+c1 a2+b1+c0 previous 2 lines XORred with eachother
Now the new register is: (c3) (b3+c2) (a3+b2+c1) (a2+b1+c0)

Processing third byte, Z:

(a2+b1+c0)+Z this is the calculated topbyte (3)
d3 d2 d1 d0 sequence in table where the topbyte points at
00 c3 b3+c2 a3+b2+c1 to right shifted register
00+d3 c3+d2 b3+c2+d1 a3+b2+c1+d0 previous 2 lines XORred with eachother
Now the new register is: (d3) (c3+d2) (b3+c2+d1) (a3+b2+c1+d0)

Processing fourth byte, W:

(a3+b2+c1+d0)+W this is the calculated topbyte (4)
e3 e2 e1 e0 sequence in table where the topbyte points at
00 d3 c3+d2 b3+c2+d1 to right shifted register
00+e3 d3+e2 c3+d2+e1 b3+c2+d1+e0 previous 2 lines XORred with eachother
Now the final register is: (e3) (d3+e2) (c3+d2+e1) (b3+c2+d1+e0)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

13



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

I’ll show it a little different way:

a0 + X =(1) points to b3 b2 b1 b0 in table
a1 + b0 + Y =(2) points to c3 c2 c1 c0 in table
a2 + b1 + c0 + Z =(3) points to d3 d2 d1 d0 in table
a3 + b2 + c1 + d0 + W =(4) points to e4 e3 e2 e1 in table

b3 + c2 + d1 + e0 =f0
c3 + d2 + e1 =f1

d3 + e2 =f2
e3 =f3

(1) (2) (3) (4)

(figure 4)

This is reversed in the same way as the 16bit version. I shall give an example with real values. For the table values use the
CRC-32 table in the appendix.

Take for CRC register before, a3 a2 a1 a0 -> AB CD EF 66
Take for CRC register after, f3 f2 f1 f0 -> 56 33 14 78 (wanted value)

Here we go:

First byte of entries entry value
e3=f3 =56 -> 35h=(4) 56B3C423 for e3 e2 e1 e0
d3=f2+e2 =33+B3 =E6 -> 4Fh=(3) E6635C01 for d3 d2 d1 d0
c3=f1+e1+d2 =14+C4+63 =B3 -> F8h=(2) B3667A2E for c3 c2 c1 c0
b3=f0+e0+d1+c2=78+23+5C+66=61 -> DEh=(1) 616BFFD3 for b3 b2 b1 b0

Now we have all needed values, then
X=(1)+ a0= DE+66=B8
Y=(2)+ b0+a1= F8+D3+EF=C4
Z=(3)+ c0+b1+a2= 4F+2E+FF+CD=53
W=(4)+d0+c1+b2+a3=35+01+7A+6B+AB=8E
(final computation)

Conclusion: to change the CRC-32 register from ABCDEF66 to 56331478 we need this sequence of bytes: B8 C4 53 8E

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

14



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

VII. The reverse Algorithm for CRC-32

If you look at the by-hand computation of the sequence of bytes needed to change the CRC register from a3 a2 a1 a0 to f3
f2 f1 f0 its difficult to transform this into a nice compact algorithm. Look at an extended version of the final computation:

Position
X =(1) + a0 0
Y =(2) + b0 + a1 1
Z =(3) + c0 + b1 + a2 2
W =(4) + d0 + c1 + b2 + a3 3
f0= e0 + d1 + c2 + b3 4
f1= e1 + d2 + c3 5
f2= e2 + d3 6
f3= e3 7

(figure 5)

It is just the same as figure 4, only some values/bytes exchanged. This view will help us to get a compact algorithm. What
if we take a buffer of 8 bytes that is, for every line you see in figure 5 one byte is reserved. Bytes 0 to 3 are filled with a0
to a3, bytes 4 to 7 are filled with f0 to f3. As before, we take the last byte e3 which is equal to f3 and lookup the complete
value in the CRC table. Then we XOR this value (e3 e2 e1 e0) on position 4 (as in figure 5). Then we automatically know
what the value of d3 is, because we already XORred f3 f2 f1 f0 with e3 e2 e1 e0, and f2+e2=d3. Because we now already
know what the value of (4) is (the entry number), we can directly XOR the value into position 3. Now we know d3 use
this to lookup the value of d3 d2 d1 d0 and XOR this on one position earlier, that is position 3 (look at the figure!). XOR
the found entry number (3) for the value on position 2. We now know c3 because we have the value f1+e1+d2=c3 on position 5.

We go on doing this until we XORred b3 b2 b1 b0 on position 1. Et voila! Bytes 0 to 3 of the buffer now contains the
needed bytes X to W!

Summarized is here the algorithm:

1) Of the 8 byte buffer, fill position 0 to 3 with a0 to a3 (the start value of the CRC register), and position 4 to 7 with f0
to f3 (wanted end value of CRC register).

2) Take the byte from position 7 and use it to lookup the complete value.
3) XOR this value (dword) on position 4
4) XOR the entry number (byte) on position 3
5) Repeat step 2 & 3 three more times while decreasing the positions each time by one.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

15



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

VIII. Implementation of the Reverse Algorithm

Now its time for some code. Below are the implementation of the reverse algorithm for CRC-32 in Assembly (it is not difficult
to do this for other languages and/or CRC standards). Note that in assembly (on PC’s) dwords are written to and read from
memory in reverse order.

crcBefore dd (?)
wantedCrc dd (?)
buffer db 8 dup (?)

mov eax, dword ptr[crcBefore] ;/*
mov dword ptr[buffer], eax
mov eax, dword ptr[wantedCrc] ; Step 1
mov dword ptr[buffer+4], eax ;*/

mov di, 4
computeReverseLoop:

mov al, byte ptr[buffer+di+3] ;/*
call GetTableEntry ; Step 2 */
xor dword ptr[buffer+di], eax ; Step 3
xor byte ptr[buffer+di-1], bl ; Step 4
dec di ;/*
jnz computeReverseLoop ; Step 5 */

Notes:
-Registers eax, di bx are used

Implementation of GetTableEntry

crctable dd 256 dup (?) ;should be defined globally somewhere
; & initialized of course

mov bx, offset crctable-1
getTableEntryLoop:

add bx, 4 ;points to (crctable-1)+k*4 (k:1..256)
cmp [bx], al ;must always find the value somewhere
jne getTableEntryLoop

sub bx, 3
mov eax, [bx]
sub bx, offset crctable
shr bx, 2

ret

On return eax contains a table entry, bx contains the entry number.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

16



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

IX. Outtro

Well... your reached the end of this essay. If you now think: wow, all those programs which are protected by CRC can say ’bye,
bye’. Nope. It is very easy to make an anti-anti-CRC code. To make a succesfull CRCreverse you have to know exactly from
what part of the code the CRC is calculated and what CRC algorithm is used. A simple countermeasure is using 2 different
CRC algorithms, or combination with another dataprotection algorithm.

Anywayz... I hope all this stuff was interesting and that you enjoyed reading it as I enjoyed writing it.

Fnx go out to the beta-testers Douby/DREAD and Knotty Dread for the good comments on my work which made it even better!

For a sample CRC-32 correcting patcher program visit my webpages:

http://surf.to/anarchriz -¿ Programming -¿ Projects

(it’s still a preview but will give you a proof of my idea)

For more info on DREAD visit http://dread99.cjb.net/

If you still have questions you can mail me at anarchriz@hotmail.com, or try the channels #dread, #Win32asm, #C.I.A
and #Cracking4Newbies (in that order) on EFnet (on IRC).

CYA ALL! - Anarchriz

”The system makes its morons, then despises them for their ineptitude, and rewards its ’gifted few’ for their rarity.” - Colin
Ward

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

17



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

X. Appendix

A. CRC-16 Table

00h 0000 C0C1 C181 0140 C301 03C0 0280 C241
08h C601 06C0 0780 C741 0500 C5C1 C481 0440
10h CC01 0CC0 0D80 CD41 0F00 CFC1 CE81 0E40
18h 0A00 CAC1 CB81 0B40 C901 09C0 0880 C841

20h D801 18C0 1980 D941 1B00 DBC1 DA81 1A40
28h 1E00 DEC1 DF81 1F40 DD01 1DC0 1C80 DC41
30h 1400 D4C1 D581 1540 D701 17C0 1680 D641
38h D201 12C0 1380 D341 1100 D1C1 D081 1040

40h F001 30C0 3180 F141 3300 F3C1 F281 3240
48h 3600 F6C1 F781 3740 F501 35C0 3480 F441
50h 3C00 FCC1 FD81 3D40 FF01 3FC0 3E80 FE41
58h FA01 3AC0 3B80 FB41 3900 F9C1 F881 3840

60h 2800 E8C1 E981 2940 EB01 2BC0 2A80 EA41
68h EE01 2EC0 2F80 EF41 2D00 EDC1 EC81 2C40
70h E401 24C0 2580 E541 2700 E7C1 E681 2640
78h 2200 E2C1 E381 2340 E101 21C0 2080 E041

80h A001 60C0 6180 A141 6300 A3C1 A281 6240
88h 6600 A6C1 A781 6740 A501 65C0 6480 A441
90h 6C00 ACC1 AD81 6D40 AF01 6FC0 6E80 AE41
98h AA01 6AC0 6B80 AB41 6900 A9C1 A881 6840

A0h 7800 B8C1 B981 7940 BB01 7BC0 7A80 BA41
A8h BE01 7EC0 7F80 BF41 7D00 BDC1 BC81 7C40
B0h B401 74C0 7580 B541 7700 B7C1 B681 7640
B8h 7200 B2C1 B381 7340 B101 71C0 7080 B041

C0h 5000 90C1 9181 5140 9301 53C0 5280 9241
C8h 9601 56C0 5780 9741 5500 95C1 9481 5440
D0h 9C01 5CC0 5D80 9D41 5F00 9FC1 9E81 5E40
D8h 5A00 9AC1 9B81 5B40 9901 59C0 5880 9841

E0h 8801 48C0 4980 8941 4B00 8BC1 8A81 4A40
E8h 4E00 8EC1 8F81 4F40 8D01 4DC0 4C80 8C41
F0h 4400 84C1 8581 4540 8701 47C0 4680 8641
F8h 8201 42C0 4380 8341 4100 81C1 8081 4040

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

18



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

B. CRC-32 Table

00h 00000000 77073096 EE0E612C 990951BA
04h 076DC419 706AF48F E963A535 9E6495A3
08h 0EDB8832 79DCB8A4 E0D5E91E 97D2D988
0Ch 09B64C2B 7EB17CBD E7B82D07 90BF1D91

10h 1DB71064 6AB020F2 F3B97148 84BE41DE
14h 1ADAD47D 6DDDE4EB F4D4B551 83D385C7
18h 136C9856 646BA8C0 FD62F97A 8A65C9EC
1Ch 14015C4F 63066CD9 FA0F3D63 8D080DF5

20h 3B6E20C8 4C69105E D56041E4 A2677172
24h 3C03E4D1 4B04D447 D20D85FD A50AB56B
28h 35B5A8FA 42B2986C DBBBC9D6 ACBCF940
2Ch 32D86CE3 45DF5C75 DCD60DCF ABD13D59

30h 26D930AC 51DE003A C8D75180 BFD06116
34h 21B4F4B5 56B3C423 CFBA9599 B8BDA50F
38h 2802B89E 5F058808 C60CD9B2 B10BE924
3Ch 2F6F7C87 58684C11 C1611DAB B6662D3D

40h 76DC4190 01DB7106 98D220BC EFD5102A
44h 71B18589 06B6B51F 9FBFE4A5 E8B8D433
48h 7807C9A2 0F00F934 9609A88E E10E9818
4Ch 7F6A0DBB 086D3D2D 91646C97 E6635C01

50h 6B6B51F4 1C6C6162 856530D8 F262004E
54h 6C0695ED 1B01A57B 8208F4C1 F50FC457
58h 65B0D9C6 12B7E950 8BBEB8EA FCB9887C
5Ch 62DD1DDF 15DA2D49 8CD37CF3 FBD44C65

60h 4DB26158 3AB551CE A3BC0074 D4BB30E2
64h 4ADFA541 3DD895D7 A4D1C46D D3D6F4FB
68h 4369E96A 346ED9FC AD678846 DA60B8D0
6Ch 44042D73 33031DE5 AA0A4C5F DD0D7CC9

70h 5005713C 270241AA BE0B1010 C90C2086
74h 5768B525 206F85B3 B966D409 CE61E49F
78h 5EDEF90E 29D9C998 B0D09822 C7D7A8B4
7Ch 59B33D17 2EB40D81 B7BD5C3B C0BA6CAD

80h EDB88320 9ABFB3B6 03B6E20C 74B1D29A
84h EAD54739 9DD277AF 04DB2615 73DC1683
88h E3630B12 94643B84 0D6D6A3E 7A6A5AA8
8Ch E40ECF0B 9309FF9D 0A00AE27 7D079EB1

90h F00F9344 8708A3D2 1E01F268 6906C2FE
94h F762575D 806567CB 196C3671 6E6B06E7
98h FED41B76 89D32BE0 10DA7A5A 67DD4ACC
9Ch F9B9DF6F 8EBEEFF9 17B7BE43 60B08ED5

A0h D6D6A3E8 A1D1937E 38D8C2C4 4FDFF252
A4h D1BB67F1 A6BC5767 3FB506DD 48B2364B

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

19



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

A8h D80D2BDA AF0A1B4C 36034AF6 41047A60
ACh DF60EFC3 A867DF55 316E8EEF 4669BE79

B0h CB61B38C BC66831A 256FD2A0 5268E236
B4h CC0C7795 BB0B4703 220216B9 5505262F
B8h C5BA3BBE B2BD0B28 2BB45A92 5CB36A04
BCh C2D7FFA7 B5D0CF31 2CD99E8B 5BDEAE1D

C0h 9B64C2B0 EC63F226 756AA39C 026D930A
C4h 9C0906A9 EB0E363F 72076785 05005713
C8h 95BF4A82 E2B87A14 7BB12BAE 0CB61B38
CCh 92D28E9B E5D5BE0D 7CDCEFB7 0BDBDF21

D0h 86D3D2D4 F1D4E242 68DDB3F8 1FDA836E
D4h 81BE16CD F6B9265B 6FB077E1 18B74777
D8h 88085AE6 FF0F6A70 66063BCA 11010B5C
DCh 8F659EFF F862AE69 616BFFD3 166CCF45

E0h A00AE278 D70DD2EE 4E048354 3903B3C2
E4h A7672661 D06016F7 4969474D 3E6E77DB
E8h AED16A4A D9D65ADC 40DF0B66 37D83BF0
ECh A9BCAE53 DEBB9EC5 47B2CF7F 30B5FFE9

F0h BDBDF21C CABAC28A 53B39330 24B4A3A6
F4h BAD03605 CDD70693 54DE5729 23D967BF
F8h B3667A2E C4614AB8 5D681B02 2A6F2B94
FCh B40BBE37 C30C8EA1 5A05DF1B 2D02EF8D

XI. References

• A painless guide to CRC error detection algorithm url:
ftp://ftp.adelaide.edu.au/pub/rocksoft/crcv3.txt
(I bet this ’painless guide’ is more painfull then my ’short’ one ;)

• I also used a random source of a CRC-32 algorithm to understand the algorithm better.
• Link to crc calculation progs... hmmm search for ’CRC.ZIP’ or ’CRC.EXE’ or something alike at ftpsearch

(http://ftpsearch.lycos.com/?form=advanced)

Copyright 1998,1999 by Anarchriz
(this is REALLY the last line :)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

20


