(© The CodeBreakers-Journal, Vol. 1, No. 1 (2004)
http://www.CodeBreakers-Journal.com

CRC and how to Reverse it

Anarchriz

Abstract

This essay consists of a CRC tutorial and a way of how to reverse it. Many Coders/Reversers don't know exactly how CRC
works and almost no one knows how to reverse it, while this knowledge could be very usefull. First the tutorial will learn you
how to calculate CRC in general, you can use it as data/code protection. Second, the reverse part will learn you (mainly) how
to reverse CRC-32, you can use this to break certain CRC protections in programs or over programs (like anti-virus). There
seem to be utilities who can ’correct’” CRCs for you, but | doubt they also explain what they're doing.

I’d like to warn you, since there is quite some math used in this essay. This wont harm anyone, and will be well understood
by the avarage Reverser or Coder. Why? WelI. If you dont know why math is used in CRC, | suggest that you click that button
with a X at the top-right of this screen. So | assume the reader has knowledge of binair arithmetic.

Keywords. Reverse Code Engineering; CRC;

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

|. Introduction

Target: CRC al gorithm

Essay Level: Internedi ate

Tool s used: QEdit 2.1 (the best!)
Wor dpad

some CRC progs

| DA PRO 3.6

[I. What is CRC?

Cyclic Redundancy Code or CRC

We all know CRC. Even if you don't recall, you will when you think of those annoying messages RAR, ZIP and other
compressors give you when the file is corrupted due to bad connections or!tfa$8s floppies. The CRC is a value
computed over a piece of data, for example for each file at the time of compression. When the archiver is unpacking that
file, it will read the CRC and check it with the newly computed CRC of the uncompressed file. When they match, there is a
good chance that the files are identical. With CRC-32, there is a cha@g of the check failing to recognize a change in data.

A lot of people think CRC is short for Cyclic Redundancy Check. If indeed CRC is short for Cyclic Redundancy Check
then a lot of people use the term incorrect. If it was you could not say 'the CRC of the program is 12345678'. People are
also always saying a certain program has a CRC check, not a Cyclic Redundancy Check check. Conclusion: CRC stands for
Cyclic Redundancy Code and NOT for Cyclic Redundancy Check.

How is the calculation done? Well, the main idea is to see the file as one large string of bits divided by some number,
which will leave you with a remainder, the CRC! You always have a remainder (can also be zero) which is at most one bit
less then the divisor (else it still has a divisor in it). (9/3=3 remainder=0 ; (9+2)/3=3 remainder=2)

Only here dividing with bits is done a little different. Dividing is repeatedly substracting (x times) a number (divisor) from a
number you want to divide, which will leave you with the remainder. If you want the original number back you multiply with
the divisor or (idem) add x times the divisor with itself and afterwards adding the remainder. CRC computation uses a special
way of substracting and adding, i.e. a new "arithmetic’. While computing the carry for each bit calculation is 'forgotten’. Let’s
look at 2 examples, number 1 is a normal substraction, 2&3 are special.

-+
(1) 1101 (2) 1010 1010 (3) 0+0=0 0-0=0
1010- 1111+ 1111- 0+1=1 *0-1=1
- Ceee e 1+0=1 1-0=1
0011 0101 0101 *141=0 1-1=0

In (1), the second column from the right would evaluate to 0-1=-1, therefore a bit is 'borrowed’ from the bit next to it, which
will give you this substraction (10+0)-1=1. (this is like normal 'by-paper’ decimal substraction) The special case (2&3) 1+1
would normally have as answer 10, where the '1’ is the carry which 'transports’ the value to the next bit computation. This
value is forgotten. The special case 0-1 would normally have as answer '-1’, which would have impact on the bit next to it
(see example 1). This value is also forgotten. If you know something about programming this looks like, or better, it IS the
XOR operation.

Now look at an example of a divide:

2

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

In normal arithmetic:

1001/1111000\ 1101 13 9/ 120\ 13

1001

1100
1001

09 -
-
30 |
27 -

0110 3 -> the remni nder
0000 -

1100
1001 -

011 -> 3, the remi nder
In CRC arithmetic:

1001/ 1111000\ 1110 9/ 120\ 14 renai nder 6
1001 -

1100

1001 -
1010
1001 -
0110
0000 -

110 -> the renuni nder
(exampl e 3)
The quotient of a division is not important, and not efficient to remember, because that would be only a couple of bits less
than the bitstring where you wanted to calculate the CRC from. What IS important is the remainder! That's the thing that says
something important over about the original file. That’s basicly the CRC!
Going over to the real CRC computation
To perform a CRC calculation we need to choose a divisor, we call it the 'poly’ from now on. The width W of a poly

is the position of the highest bit, so the width of poly 1001 is 3, and not 4. Note that the highest bit is always one, when you
have chosen the width of the poly you only have to choose a value for the lower W bits.

3

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

If we want to calculate the CRC over a bitstring, we want to make sure all the bits are processed. Therefore we need to add
W zero bits to the end of the bitstring. In the case of example 3, we could say the bitstring was 1111. Look at a little bigger
example:

10011, width W4
110101101 + 0000

Pol y
Bitstring + Wzeros

\ 110000101 (we don’t care about the quotient)

10011 | -

----- |
01110]

00000 -

1111 -> the remmi nder -> the CRC

(exampl e 4)

There are 2 important things to state here:

1.0nly when the highest bit is one in the bitstring we XOR it with the poly, otherwise we only 'shift’ the bitstring one bit to
the left.

2.The effect of XORring is, that it's XORed with the lower W bits, because the highest bit always gives zero.

Going over to a Table-Driven Algorithm

4

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

You all should understand that an algorithm based on bitwise calculation will be very slow and inefficient. It would be far
more efficient if you could calculate it on a per-byte basis. But then we can only accept poly’s with a width of a multiple of
8 bits (that's a byte ;). Lets visualize it in a example poly with a width of 32 (W=32):

3 2 1 0 byt e
o e -+

Pop! <--| | [[| <-- bitstring with Wzero bits added, in this case 32
B LR 1<--- 32 bits --->this is the poly, 4*8 bits

(figure 1)

This is a register you use to store the temporary result of the CRC, | call it the CRC register or just register from now on.
You are shifting bits from the bitstring in at the right side, and bits out at the left side. When the bit just shifted out at the
left side is one, the whole register is XORred by the lower W bits of the poly (in this case 32). In fact, we are doing exactly
the same thing as the divisions above. What if (as | said) we would shift in & out a whole group of bits at once.

Look at an example of 8 bit CRC with 4 bits at once shifted in & out:

The register just before the shift : 10110100
Then 4 bits (at the top) are shifted out at the left side while shifting 4 new bits in at the right side. In this example 1011 is
shifted out and 1101 (new) is shifted in.

Then the situation is this:

8 bits currently CRC/ Regi ster : 01001101
4 top bits just shifted out : 1011
We use this poly : 101011100, wi dth W8

Now we calculate just as usual the new value of the register.

Top Register

1011 01001101 the topbits and the register

1010 11100 + (*1) Poly is XORred on position 3
————————————— of top bits (coz there is a one)
0001 10101101 result of XORring

Now we still have a one on bit position 0 of topbits:

0001 10101101 previous result

1 01011100+ (*2) Poly is XORred on position O
————————————— of top bits (coz there is a one)
0000 11110001 result of second XORring

Now there are all zero’s in the topbits, so we dont have to XOR with the poly anymore for this sequence of topbits.

5

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The same value in the register you get if you first XOR (*1) with (*2) and the result with the register. This is because of the
standard XOR property:

(a XOR b) XORc = a XOR (b XOR ¢)

1010 11100 poly on position 3 of top bits

1 01011100+ poly XORred on position O of top bits
1011 10111100 (*3) result of XORring
The result (*3) is XORred with the register

1011 10111100
1011 01001101+ the top bits and the register

0000 11110001

You see? The same result! Now (*3) is important, because with the top bits 1010 is always the value (*3)=10111100 (only
the lower W=8 bits) bound (under the stated conditions, of course) This means you can precompute the XOR values for each
combination of top bits. Note that top bits always become zero after one iteration, this must be because the combination of
XORring leads to it.

Now we come back to figure 1. For each value of the top byte (8 bits) just shifted out, we can precompute a value. In
this case it would be a table consisting of 226)(entries of double words (32bit). (the CRC-32 table is in the appendix)

In pseudo-language our algoritm now is this:

While (byte string is not exhausted)
Begi n
Top = top_byte of register ;

Regi ster = Register shifted 8 bits left ORred with a new byte fromstring ;
Regi ster = Register XORred by val ue from preconput edTabl e at position Top ;
End

6

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

[ll. The direct Table Algorithm

The algorithm proposed above can be optimized. The bytes from the byte string don’t need to travel through the whole register
before they are used. With this new algorithm we can directly XOR a byte from a byte string with the byte shifted out of the
register. The result points to a value in the precomputed table which will be XORred with the register.

I don't know exactly why this gives the same result (it has to do with a XOR property), but it has the Big advantage
you don’t have to append zero bytes/bits to your byte string. (if you know why, pleaz tell me :)

Lets visualize this algorithm:

+----< byte string (or file)

|

v 3 2 1 0 byt e

| I T I RS

XOR- - - <| | | [| Register
| I L S -

| I

| XOR

| N

\Y L

| | | | | | Preconputed table
| I L S -

> : : :

e e e+

B LR C L E
(figure 2)

IV. The ’reflected’ direct Table Algorithm

To make things more complicated there is a 'reflected’ version of this algorithm. A Reflected value/register is that it's bits are
swapped around it's centre. For example 0111011001 is the reflection of 1001101110.

They came up with this because of the UART (chip that performs serial 10), which sends each byte with the least significant
bit (bit 0) first and the most significant bit (bit 7) last, this is the reverse of the normal situation. Instead then of reflecting
each byte before processing, every else is reflected. An advantage is that it gives more compact code in the implementation.
So, in calculating the table, bits are shifted to the right and the poly is reflected. In calculating the CRC the register is shifted
to the right and (of course) the reflected table is used.

7

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

byte string (or file) -->--+
| 1. In the table each entry is reflected

byte 3 2 1 0 \% 2. The initial register is reflected
B e e il [3. The bytes fromthe byte string aren’'t
| | | | | >---XOR refl ected, because all the rest is.

S

I
XOR

L e

e e e -+

Preconput ed tabl e

e e e -+

S

(figure 3)

Our algorithm is now:

1) Shift the register right by one byte

2) XOR the top byte just shifted out with a new byte from the byte string to yield an index into the table ([0,255])
3) XOR the table value into the register

4) Goto 1 if there are more bytes to process

V. Some implementations in Assembly

To get everything settled here’s the complete CRC-32 standard:

Nane . "CRGC 32"
W dt h - 32

Pol'y : 04C11DB7
Initial value : FFFFFFFF
Ref | ect ed : True
XOR out with . FFFFFFFF

As a bonus for you curious people, here’s the CRC-16 standard: :)

Nane . "CRC 16"
W dt h . 16

Pol y : 8005
Initial value : 0000

Ref | ect ed . True
XOR out with . 0000

'XOR out with’ is the value that is XORred with the final value of the register before getting (as answer) the final CRC. There
are also reversed’ CRC poly’'s but they are not relevant for this tutorial. Look at my references if you want to know more
about that.

8

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

For the assembly implementation | use 32 bit code in 16 bit mode of DOS... so you will see some mixing of 32 bit and
16 bit code... it is easy to convert it to complete 32 bit code. Note that the assembly part is fully tested to be working correctly,
the Java or C code is derived from that. Ok. Here is the assembly implementation for computing the CRC-32 table:

xor ebx, ebx ; ebx=0, because it will be used whol e as pointer
I ni t Tabl eLoop:

xor eax, eax ;eax=0 for new entry

nmov al, bl ;lowest 8 bits of ebx are copied

;into | owest 8 bits of eax

;generate entry

xor CX, CX
entrylLoop:
t est eax, 1
jz no_t opbit
shr eax, 1
xor eax, poly
jmp entrygoon
no_t opbit:
shr eax, 1
entrygoon:
i nc cX
t est cx, 8
jz entryLoop
nmov dword ptr[ebx*4 + crctable], eax
i nc bx
t est bx, 256
jz I nit Tabl eLoop
Notes: - crctable is an array of 256 dwords

- eax is shifted to the right because the CRC 32
uses reflected Al gorithm
- also therefore the lowest 8 bits are processed..

In Java or C (int is 32 bit):

for (int bx=0; bx<256; bx++){
i nt eax=0;
eax=eax&XxFFFFFFO0+bx&0xFF; /!l the "nov al,bl’ instruction
for (int cx=0; cx<8; cx++)({
if (eax&&0x1) ({
eax>>=1;
eax” =pol y;
}
el se eax>>=1;
}

crct abl e[bx] =eax;

}

9

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The implementation for computing CRC-32 using the table:

conput eLoop:

xor ebx, ebx

xor al, [si]

nmov bl, a

shr eax, 8

xor eax, dword ptr[4*ebx+crctabl e]
i nc Si

| oop comput eLoop
xor eax, OFFFFFFFFh

Notes: - ds:si points to the buffer where the bytes to process are
- cx contains the nunmber of bytes to process
- eax contains current CRC
- crctable is the table conmputed with the code above
- the initial value of the CRCis in the case of CRC 32: FFFFFFFF
- after conplete calculation the CRCis XORred with: FFFFFFFF
which is the same as NOTti ng.

In Java or C it is like this:

for (int cx=0; cx
i nt ebx=0;
eax” =bytesOFile[cx]; // only the | owest byte should be XORred
ebx=eax&0xFF;
eax>>=8;
eax” =cr cTabl e[ebx] ;

}
eax” =0xFFFFFFFF;

So now we landed at the end of the first part: The CRC tutorial. If you want to make a little deeper dive in CRC | suggest
reading the document | did, you will find the URL at the end of this document. Ok. On to the most interesting part of this
document: Reversing CRC!

VI. Reversing CRC

When | was thinking of a way to reverse it... | got stuck several times. | tried to 'deactivate’ the CRC by thinking of such
an sequence of bytes that it then shouldn’t matter anymore what bytes you would place behind it. | couldn’t do it... Then |
realized it could NEVER work that way, because CRC algorithm is build in such a way it wouldn’t matter wihiich you

would change, the completéRC _al ways_ (well always... almost) changes drasticly. Try that yourself (with some simple
CRC programs)... :)

| realized | only could 'correct’ the CRC aft er _ the bytes | wanted to change. So | could make such a sequence of
bytes, that would 'transform’ the CRC into whatever | wanted! Let’s visualize the idea:

Bunch of bytes: 01234567890123456789012345678901234567890123456789012
You want to change from ~ this byte to ~ this one.

Thats position 9 to 26.
We also need 4 extra bytes (until position 30) for the sequence of bytes which will change the CRC back to its original value
after the patched bytes.

10

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

When you are calculating the CRC-32 it goes fine until the byte on position 9, in the patched bunch of bytes the CRC
radically changes from that point on. Even when pass position 26, from where the bytes are not changed, you never get the
original CRC back. NOT! When you read the rest of this essay you know how. In short you have do this when patching a
certain bunch of bytes while maintainting the CRC:

1) Calculate the CRC until position 9, and save this value.

2) Continue calculating until position 27 and 4 extra bytes, save the resulting value.

3) Use the value of 1 for calculating the CRC of the 'new’ bytes and the extra 4 bytes (this should be 27-9+4=22 hytes)
and save the resulting value.

4) Now we have the 'new’ CRC value, but we want the CRC to be the 'old’ CRC value. We use the reverse algorithm to
compute the 4 extra bytes.

We can to point 1 to 3, below you learn to do point 4.
A. Reversing CRC-16

| thought, to make it more easy for you, first to calculate the reverse of CRC-16. Ok. We are on a certain point after the
patched code where you want to change the CRC back to its original. We know the original CRC (calculated before patching
the data) and the current CRC register. We want to calculate the 2-bytestring which changes the current CRC register to the
original CRC. First we calculate 'normally’ the CRC with the unknown 2 bytes naming them X and Y, for the register | take

al a0, the only non-variable is zero (00). :) Look again at our latest CRC algorithm, figure 3, to understand better what i'm
doing. Ok, here we go:

Take a 2-bytestring "X Y’. Bytes are processed from the left side.

Take for register al a0.
For a XOR operation | write '+’ (as in the CRC tutorial)

Processing first byte, X:

a0+Xx this is the calculated topbyte (1)

bl b0 sequence in table where the topbyte points at
00 al to right shifted register

00+bl al+b0 previous 2 lines XORred with eachot her

Now the new register is: (bl) (al+b0)

Processing second byte, Y:

(al+b0) +Y this is the cal cul ated topbyte (2)

cl cO sequence in table where the topbyte points at
00 b1 to right shifted register

00+c1 bl+cO previous 2 lines XORred with eachot her

Now the final register is: (cl) (bl+cQ)
I'll show it a little different way:

a0 + X =(1) points to bl b0 in table
al + bO + Y =(2) points tocl cO in table
bl + c0=d0 new |l ow byte of register
cl=dl new high byte of register

(1) (2

11

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Wow! Let this info work out on you for a while... :)
Don’t be afraid, a real value example is coming soon.

What if you wanted the register to be some d1 dO (the original CRC) and you know the value of the register before the
transformation (so al a0)... what 2 bytes or what X and Y would you have to fed through the CRC calculation? Ok. We will

begin working from the back to the front. d0 must be b1+c0 and d1 must be cl... But how-the-hell, I hear you say, can you
know the value of byte bl and c0??? Shalll remember you about the Table? You can just lookup the value of the word CO
C1 in the Table because you know C1. Therefore you need to make a ’lookup’ routine. If you found the value, be sure to
remember the index to the value because that's the way to find the unknown topbytes e.g. (1)&(2)!

So now you found cl cO, how to get bl b0? If bl+c0=d0 then bl=d0+cO! Now you use the lookup routine to lookup
the bl b0 value too. Now we know everything to calculdt& Y ! Cool huh?

al+b0+Y=(2) so Y=al+b0+(2)
a0+X=(1) so X=a0+(1)
Non- vari abl e exanpl e for CRC- 16

Lets look at an example with real values:

-regi ster before: (al=)DE (a0=)AD
-wanted register: (dl=)12 (d0=)34

Look up the entry beginning with 12 in the CRC-16 table in the appendix. -This is entry 38h with value 12CO0. Try to find
another entry beginning with 12.

You can't find another because we calculated each entry for each possible value of the topbyte and that's 256 values, remember!
Now we know (2)= 38, c1= 12 and cO= CO, so bl= C0+34=F4, now look up the entry of B1 beginning with F4.

-This is entry 4Fh with value F441.

Now we know (1)= 4F, b1l= F4 and bO= 41. Now all needed values are known, to compute X and Y we do:

Y=al+b0+(2) =DE+41+38=A7
X=a0+(1) =AD+4F =E2

Conclusion: to change the CRC-16 register from DEAD to 1234 we need the bytes E2 A7 (in that order).

You see, to reverse CRC you have to ’calculate’ your way back, and remember the values along the way. When you are
programming the lookup table in assembly, remember that intel saves values backwards in Little-Endian format. Now you
probably understand how to reverse CRC-16.... now CRC-32

12

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

B. Reversing CRC-32

Now we had CRC-16, CRC-32 is just as easy (or as difficult). You now work with 4 bytes instead of 2. Keep looking and

comparing this with the 16bit version from above.

Take a 4-bytestringk Y Z W , bytes are taken from the LEFT sideTake for register a3 a2 al a0

Note that a3 is the most significant byte and a0 the least.

Processing first byte, X:

a0+Xx
b3 b2 bl b0
00 a3 a2 al

this is the calcul ated topbyte (1)
sequence in table where the topbyte points at
to right shifted register

00+b3 a3+b2 a2+bl al+b0 previous 2 lines XORred with eachother

Now t he new regi ster

Processing second byte, Y:

(al+b0) +Y
c3 c2 cl
00 b3 a3+b2

00+c3 b3+c2 a3+b2+cl
Now t he new regi ster

Processing third byte, Z:

(a2+bl+c0) +z

d3 d2 dl

00 c3 b3+c2
00+d3 c3+d2 b3+c2+dl
Now t he new register

Processing fourth byte, W:

(a3+b2+c1+d0) +W

e3 e2 el

00 d3 c3+d2
00+e3 d3+e2 c3+d2+el
Now t he fi nal

regi ster

is: (b3) (a3+b2) (a2+bl) (al+b0)
this is the cal cul ated topbyte (2)
cO sequence in table where the topbyte points at
a2+b1l to right shifted register
a2+bi1+cO previous 2 lines XORred with eachot her
is: (c3) (b3+c2) (a3+b2+cl) (a2+bl+cO0)
this is the cal cul ated topbyte (3)
do sequence in table where the topbyte points at
a3+b2+cl to right shifted register

a3+b2+c1+d0 previous 2 lines XORred with eachother

is: (d3) (c3+d2) (b3+c2+dl) (a3+b2+c1+d0)

this is the cal cul ated topbyte (4)
e0 sequence in table where the topbyte points at
b3+c2+d1l to right shifted register

b3+c2+d1+e0 previous 2 lines XORred wth eachot her
is: (e3) (d3+e2) (c3+d2+el) (b3+c2+dl+e0)

13

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and

distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

I'll show it a little different way:

a0 + X =(1) points to b3 b2 bl b0 in table
al + b0 + Y =(2) pointsto c3 c2cl cO in table
a2 + bl + c0 + Z =(3) points to d3 d2 d1 dO in table
a3 + b2 +cl +d0o +W =(4) pointsto ed4 e3 e2 el in table
b3 + c2 +dl + e0 =f0
c3 +d2 + el =f1
d3 + e2 =f2
e3 =f3
(1) (2 (3) (4
(figure 4)

This is reversed in the same way as the 16bit version. | shall give an example with real values. For the table values use the
CRC-32 table in the appendix.

Take for CRC register before, a3 a2 al a0 -> AB CD EF 66
Take for CRC register after, f3 f2 f1 f0 -> 56 33 14 78 (wanted val ue)

Here we go:

First byte of entries entry val ue

e3=f3 =56 -> 35h=(4) 56B3C423 for e3 e2 el el
d3=f 2+e2 =33+B3 =E6 -> 4Fh=(3) E6635C01 for d3 d2 dl1 dO

c3=f 1+el+d2 =14+C4+63 =B3 -> F8h=(2) B3667A2E for c¢3 c2 cl1l cO
b3=f 0+e0+d1+c2=78+23+5C+66=61 -> DEh=(1) 616BFFD3 for b3 b2 bl b0

Now we have all needed val ues, then
X=(1) + al= DE+66=B8
Y=(2) + bO+al= F8+D3+EF=C4
Z=(3) + cO+bl+a2= 4F+2E+FF+CD=53
WE(4) +d0+c1+b2+a3=35+01+7A+6B+AB=8E
(final conputation)

Conclusion: to change the CRC-32 register from ABCDEF66 to 56331478 we need this sequence of bytes: B8 C4 53 8E

14

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

VII. The reverse Algorithm for CRC-32

If you look at the by-hand computation of the sequence of bytes needed to change the CRC register from a3 a2 al a0 to f3
f2 f1 fO its difficult to transform this into a nice compact algorithm. Look at an extended version of the final computation:

Posi tion

X =(1) + a0 0
Y =(2) + b0 + al 1
Z =(3) + cO + bl + a2 2
W=(4) + d0 + cl + b2 + a3 3
fO=e0 + d1 + c2 + b3 4
fl1= el + d2 + c3 5
f2= e2 + d3 6
f3= e3 7
(figure 5)

It is just the same as figure 4, only some values/bytes exchanged. This view will help us to get a compact algorithm. What
if we take a buffer of 8 bytes that is, for every line you see in figure 5 one byte is reserved. Bytes 0 to 3 are filled with a0
to a3, bytes 4 to 7 are filled with fO to f3. As before, we take the last byte e3 which is equal to f3 and lookup the complete
value in the CRC table. Then we XOR this value (e3 e2 el e0) on position 4 (as in figure 5). Then we automatically know
what the value of d3 is, because we already XORred f3 f2 f1 fO with e3 e2 el e0, and f2+e2=d3. Because we now already
know what the value of (4) is (the entry number), we can directly XOR the value into position 3. Now we know d3 use
this to lookup the value of d3 d2 d1 dO and XOR this on one position earlier, that is position 3 (look at the figure!). XOR
the found entry number (3) for the value on position 2. We now know c3 because we have the value f1+el+d2=c3 on position 5.

We go on doing this until we XORred b3 b2 bl b0 on position 1. Et voila! Bytes 0 to 3 of the buffer now contains the
needed bytes X to W!

Summarized is here the algorithm:

1) Of the 8 byte buffer, fill position 0 to 3 with a0 to a3 (the start value of the CRC register), and position 4 to 7 with fO
to f3 (wanted end value of CRC register).

2) Take the byte from position 7 and use it to lookup the complete value.

3) XOR this value (dword) on position 4

4) XOR the entry number (byte) on position 3

5) Repeat step 2 & 3 three more times while decreasing the positions each time by one.

15

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

VIII. Implementation of the Reverse Algorithm

Now its time for some code. Below are the implementation of the reverse algorithm for CRC-32 in Assembly (it is not difficult
to do this for other languages and/or CRC standards). Note that in assembly (on PC’s) dwords are written to and read from
memory in reverse order.

crcBefore dd (?)

want edCr c dd (?)

buf f er db 8 dup (?)
nmov eax, dword ptr[crcBefore] ;/*
nmov dword ptr[buffer], eax
nmov eax, dword ptr[wantedCrc] ; Step 1
nmov dword ptr[buffer+4], eax ;*/
nov di, 4

conput eRever seLoop:
nmov al, byte ptr[buffer+di +3] ;/*
call Get Tabl eEntry ; Step 2 */
xor dword ptr[buffer+di], eax ; Step 3
xor byte ptr[buffer+di-1], bl ; Step 4
dec di o *
j nz conput eRever seLoop ; Step 5 */

Not es:

-Regi sters eax, di bx are used

| mpl erent ati on of Get Tabl eEntry

crctabl e dd 256 dup (?) ; shoul d be defined gl obally sonewhere
; & initialized of course
nov bx, offset crctable-1
get Tabl eEnt r yLoop:
add bx, 4 ;points to (crctable-1)+k*4 (k:1..256)
cnp [bx], al ;must always find the val ue sonewhere
j ne get Tabl eEnt ryLoop
sub bx, 3
nmov eax, [bx]
sub bx, offset crctable
shr bx, 2
ret

On return eax contains a table entry, bx contains the entry number.

16

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

IX. Outtro

Well... your reached the end of this essay. If you now think: wow, all those programs which are protected by CRC can say 'bye,
bye’. Nope. It is very easy to make an anti-anti-CRC code. To make a succesfull CRCreverse you have to know exactly from
what part of the code the CRC is calculated and what CRC algorithm is used. A simple countermeasure is using 2 different
CRC algorithms, or combination with another dataprotection algorithm.

Anywayz... | hope all this stuff was interesting and that you enjoyed reading it as | enjoyed writing it.

Fnx go out to the beta-testers Douby/DREAD and Knotty Dread for the good comments on my work which made it even better!

For a sample CRC-32 correcting patcher program visit my webpages:

http://surf.to/anarchriz -¢, Programming -¢, Projects

(it's still a preview but will give you a proof of my idea)

For more info on DREAD visit http://dread99.cjb.net/

If you still have questions you can mail me at anarchriz@hotmail.com, or try the channels #dread, #Win32asm, #C.I.A
and #Cracking4Newbies (in that order) on EFnet (on IRC).

CYA ALL! - Anarchriz

"The system makes its morons, then despises them for their ineptitude, and rewards its 'gifted few’ for their rarity.” - Colin
Ward

17

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

X. Appendix
A. CRC-16 Table

00h 0000 COC1 C181 0140 C301 03CO 0280 C241
08h C601 06C0 0780 C741 0500 C5C1 C481 0440
10h CC01 0CCO0 0D8O CD41 OFO0 CFC1 CE81 OEA4O
18h 0AO0 CAC1l CB81 0B40 C901 09C0 0880 C841

20h D801 18C0 1980 D941 1BOO DBCl DA81 1A40
28h 1E00 DEC1 DF81 1F40 DDO1 1DCO 1C80 DC41
30h 1400 D4C1 D581 1540 D701 17C0 1680 D641
38h D201 12C0 1380 D341 1100 D1Cl D081 1040

40h FOO1 30C0 3180 F141 3300 F3Cl F281 3240
48h 3600 F6C1 F781 3740 F501 35C0 3480 F441
50h 3C00 FCCl FD81 3D40 FFO1 3FCO 3E80 FEA41
58h FAO1 3ACO 3B80 FB41 3900 F9Cl F881 3840

60h 2800 E8C1 E981 2940 EBO1 2BCO 2A80 EA41
68h EEO1 2ECO 2F80 EF41 2D00 EDCl EC81 2CA0
70h E401 24C0 2580 E541 2700 E7Cl E681 2640
78h 2200 E2Cl1 E381 2340 E101 21CO0 2080 EO041

80h A001 60C0O 6180 Al141 6300 A3Cl A281 6240
88h 6600 A6C1 A781 6740 A501 65C0 6480 A441
90h 6C00 ACC1 AD81 6D40 AF01 6FCO 6E80 AE41
98h AAO01 6ACO 6B80 AB41 6900 A9Cl A881 6840

AOh 7800 B8Cl B981 7940 BBO1 7BCO 7A80 BA4l
A8h BEO1 7ECO 7F80 BF41 7D00 BDCl BC81 7CA0
BOh B401 74C0 7580 B541 7700 B7Cl B681 7640
B8h 7200 B2Cl B381 7340 B101 71CO0 7080 B041

CO0h 5000 90C1 9181 5140 9301 53C0 5280 9241
C8h 9601 56C0 5780 9741 5500 95C1 9481 5440
DOh 9C01 5CC0 5D80 9D41 5F00 9FC1 9E81 S5EA0
D8h 5A00 9AC1 9B81 5B40 9901 59C0 5880 9841

EOh 8801 48C0 4980 8941 4B00 8BCl1 8A81 4A40
E8h 4E00 8EC1 8F81 4F40 8D0O1 4DCO 4C80 8CA1
FOh 4400 84C1 8581 4540 8701 47C0 4680 8641
F8h 8201 42C0 4380 8341 4100 81C1 8081 4040

18

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

The CodeBreakers-Journal,

Vol. 1, No. 1 (2004)

B. CRC-32 Table

00h
04h
08h
0Ch

10h
14h
18h
1Ch

20h
24h
28h
2Ch

30h
34h
38h
3Ch

40h
44h
48h
4Ch

50h
54h
58h
5Ch

60h
64h
68h
6Ch

70h
74h
78h
7Ch

80h
84h
88h
8Ch

90h
94h
98h
9Ch

AOh
Adh

00000000
076DCA419
OEDB8832
09B64C2B

1DB71064
1ADAD4ATD
136C9856
14015CAF

3B6E20C8
3C03E4AD1
35B5A8FA
32D86CES3

26DO30AC
21B4F4B5
2802B89E
2F6F7C87

76DCA4190
71B18589
7807C9A2
7TF6A0DBB

6B6B51F4
6CO695ED
65B0D9C6
62DD1DDF

4DB26158
4ADFA541
4369E96A
44042D73

5005713C
5768B525
S5EDEF90E
59B33D17

EDB88320
EAD54739
E3630B12
E40ECFOB

FOOF9344
F762575D
FED41B76
FOBODF6F

D6 D6 A3ES
D1BB67F1

77073096
706AF48F
79DCB8A4
7EB17CBD

6AB020F2
6DDDE4EB
646BA8CO
63066CD9

4C69105E
4B04D447
42B2986C
45DF5C75

51DEOO3A
56B3C423
5F058808
58684C11

01DB7106
06B6B51F
OFO0F934
086D3D2D

1C6C6162
1BO1A57B
12B7E950
15DAZ2D49

3AB551CE
3DD895D7
346EDOFC
33031DES5

270241AA
206F85B3
29D0C998
2EB40D81

9ABFB3B6
9DD277AF
94643B84
9309FF9D

8708A3D2
806567CB
89D32BEOD
8EBEEFF9

A1D1937E
AGBC5767

EEOE612C
E963A535
EODSE9Q1E
E7B82D07

F3B97148
F4D4B551
FD62F97A
FAOF3D63

D56041E4
D20D85FD
DBBBCOD6
DCD60DCF

C8Dr75180
CFBA9599
C60CD9B2
C1611DAB

98D220BC
9FBFE4AS
9609A88E
91646C97

85653008
8208F4C1
8BBEBSEA
8CD37CF3

A3BC0074
AAD1CAGD
AD678846
AAOAACSF

BEOB1010
B966D409
BOD09822
B7BD5C3B

03B6E20C
04DB2615
OD6D6A3E
O0AOOQAE27

1E01F268
196C3671
10DA7A5A
17B7BE43

38D8C2C4
3FB506DD

990951BA
9E6495A3
97D2D988
90BF1D91

84BE41DE
83D385C7
8AG5C9EC
8D080DF5

A2677172
A50AB56B
ACBCF940
ABD13D59

BFD06116
B8BDAS0F
B10BE924
B6662D3D

EFD5102A
E8B8D433
E10E9818
E6635C01

F262004E
F50FC457
FCB9887C
FBD44C65

DABB30E2
D3D6F4FB
DAG60B8DO
DDOD7CC9

C90C2086
CEG61EA9F
C7DrA8B4
COBAG6CAD

74B1D29A
73DC1683
7ABAS5AA8
7D079EB1

6906C2FE
6EG6BOGEY
67DD4ACC
60BO8EDS

AFDFF252
48B2364B

19

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and

distribution without permission is prohibited.

The CodeBreakers-Journal,

Vol. 1, No. 1 (2004)

A8h D8OD2BDA AFOA1B4C 36034AF6 41047A60
ACh DF60EFC3 A867DF55 316E8EEF 4669BE79
BOh CB61B38C BC66831A 256FD2A0 5268E236
B4h CCOC7795 BBOB4703 220216B9 5505262F
B8h CS5BA3BBE B2BD0B28 2BB45A92 5CB36A04
BCh C2D7FFA7 B5DOCF31 2CDO9ES8B 5BDEAE1D
COh 9B64C2B0 EC63F226 756AA39C 026D930A
C4h 9C0906A9 EBOE363F 72076785 05005713
C8h 95BF4A82 E2B87Al14 7BB12BAE 0CB61B38
CCh 92D28E9B ES5D5BEOD 7CDCEFB7 0BDBDF21
DOh 86D3D2D4 F1D4E242 68DDB3F8 1FDA836E
D4h 81BE16CD F6B9265B 6FBO77El 18B74777
D8h 88085AE6 FFOF6A70 66063BCA 11010B5C
DCh 8F659EFF F862AE69 616BFFD3 166CCF45
EOh AOOAE278 D7ODD2EE 4E048354 3903B3C2
E4h A7672661 DO6016F7 4969474D 3EGE77DB
E8h AED16A4A DID65ADC 40DF0OB66 37D83BFO
ECh A9BCAES3 DEBB9ECS 47B2CF7F 30B5FFE9
FOh BDBDF21C CABAC28A 53B39330 24B4A3A6
F4h BADO3605 CDD70693 54DE5729 23D967BF
F8h B3667A2E C4614AB8 5D681B02 2A6F2B94
FCh B40BBE37 C30C8EAl 5A05DF1B 2D02EF8D

Xl. References

o A painless guide to CRC error detection algorithm url:
ftp://ftp.adelaide.edu.au/pub/rocksoft/m8. txt
(I bet this 'painless guide’ is more painfull then my ’short’ one ;)

« | also used a random source of a CRC-32 algorithm to understand the algorithm better.

« Link to crc calculation progs... hmmm search for 'CRC.ZIP’ or 'CRC.EXE’ or something alike at ftpsearch
(http://ftpsearch.lycos.com/?form=advanced)

Copyright 1998, 1999 by Anarchriz
(this is REALLY the last line :)

20

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

